www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Frobenius-Normalform
Frobenius-Normalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frobenius-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 05.05.2011
Autor: Mandy_90

Aufgabe
Man bestimme alle reellen Matrizen,die bereits in der Frobenius-Normalform sind und deren charakteristisches Polynom [mm] (X-1)^{2}*(X^{2}+x+2) [/mm] ist.

Hallo^^

Ich habe diese Aufgabe gemacht. Es wäre lieb wenn jemand schauen könnte,ob das stimmt.

[mm] \pmat{ 0 & 0 & 0 & -2 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 },\pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & -1 },\pmat{ 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & -1 } [/mm]

Vielen Dank
lg

        
Bezug
Frobenius-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Do 05.05.2011
Autor: wieschoo


> Man bestimme alle reellen Matrizen,die bereits in der
> Frobenius-Normalform sind und deren charakteristisches
> Polynom [mm](X-1)^{2}*(X^{2}+x+2)[/mm] ist.
>  Hallo^^
>  
> Ich habe diese Aufgabe gemacht. Es wäre lieb wenn jemand
> schauen könnte,ob das stimmt.
>  
> [mm]\pmat{ 0 & 0 & 0 & -2 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 },\pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & -1 },\pmat{ 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & -1 }[/mm]

[ok][ok][ok]
[mm] (X^2+X+2) [/mm] kannst du auch nicht weiter faktorisieren

>  
> Vielen Dank
>  lg

Was ist mit
[mm]\left[ \begin {array}{cccc} 1&0&0&0\\ \noalign{\medskip}0&0&0&2 \\ \noalign{\medskip}0&1&0&-1\\ \noalign{\medskip}0&0&1&0\end {array} \right] [/mm]


Bezug
                
Bezug
Frobenius-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Fr 06.05.2011
Autor: Mandy_90

Hallo,

> Was ist mit
> [mm]\left[ \begin {array}{cccc} 1&0&0&0\\ \noalign{\medskip}0&0&0&2 \\ \noalign{\medskip}0&1&0&-1\\ \noalign{\medskip}0&0&1&0\end {array} \right] [/mm]
>  
>  

Oh,die gehört natürlich auch dazu. Sonst waren das aber alle oder?

Vielen Dank
lg

Bezug
                        
Bezug
Frobenius-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Sa 07.05.2011
Autor: wieschoo

Kennst du den Satz über endlich erzeigte Moduln? (Version invariante Faktoren)

Das müssten dann alle sein.

Bezug
                                
Bezug
Frobenius-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 So 08.05.2011
Autor: Mandy_90

Hallo,

> Kennst du den Satz über endlich erzeigte Moduln? (Version
> invariante Faktoren)
>  
> Das müssten dann alle sein.

Ich kenne den Hauptsatz,der besagt,dass man einen Modul mit Elementarteilern zerlegen kann. Meinst du den?

lg

Bezug
                                        
Bezug
Frobenius-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 08.05.2011
Autor: wieschoo

Ich kenne den Hauptsatz in der Version von Wikipedia ;-)
Aber manch einmal wird es anders bezeichnet wird. (Siegfried Bosch : Algebra)

Also die Version mit jeder ivarianter Faktor ( oder eben Elementarteiler) teilt seinen Nachfolger.
Du hast [mm] $f=(X-1)(X-1)(X^2+X+2)$. [/mm] Es gibt nur die folgenden Möglichkeiten

[mm] $(X-1)\;$ [/mm]
[mm] $(X-1)(X^2+X+2)$ [/mm]

oder

[mm] $(X-1)^2$ [/mm]   und [mm] $(X^2+X+2)$ [/mm]

oder

[mm] $X-1\;$ [/mm]
[mm] $X-1\;$ [/mm]     und [mm] $(X^2+X+2)$ [/mm]

oder

[mm] $(X-1)^2(X^2+X+2)$ [/mm]

Bezug
                                                
Bezug
Frobenius-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 So 08.05.2011
Autor: Mandy_90


> Ich kenne den Hauptsatz in der Version von Wikipedia ;-)
>  Aber manch einmal wird es anders bezeichnet wird.
> (Siegfried Bosch : Algebra)
>  
> Also die Version mit jeder ivarianter Faktor ( oder eben
> Elementarteiler) teilt seinen Nachfolger.

Ja klar kenn ich die.

>   Du hast [mm]f=(X-1)(X-1)(X^2+X+2)[/mm]. Es gibt nur die folgenden
> Möglichkeiten
>  
> [mm](X-1)\;[/mm]
>  [mm](X-1)(X^2+X+2)[/mm]
>  
> oder
>  
> [mm](X-1)^2[/mm]   und [mm](X^2+X+2)[/mm]
>  
> oder
>  
> [mm]X-1\;[/mm]
>  [mm]X-1\;[/mm]     und [mm](X^2+X+2)[/mm]
>  
> oder
>  
> [mm](X-1)^2(X^2+X+2)[/mm]

Ok. Vielen Dank nochmal für deine Hilfe.
lg


Bezug
                
Bezug
Frobenius-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 So 08.05.2011
Autor: felixf

Moin,

muesste die letzte Matrix nicht

> > [mm]\pmat{ 0 & -1 & 0 & 0 \\ 1 & {\red 2} & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & -1 }[/mm]

lauten? Schliesslich ist $(X - [mm] 1)^2 [/mm] = [mm] X^2 [/mm] - [mm] {\red 2} [/mm] X + 1$.

LG Felix


Bezug
                        
Bezug
Frobenius-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 So 08.05.2011
Autor: Mandy_90


> Moin,
>  
> muesste die letzte Matrix nicht
>  
> > > [mm]\pmat{ 0 & -1 & 0 & 0 \\ 1 & {\red 2} & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & -1 }[/mm]
>  
> lauten? Schliesslich ist [mm](X - 1)^2 = X^2 - {\red 2} X + 1[/mm].
>  

Oh,stimmt. War wohl ein Tippfehler. Danke für den Hinweis.

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de