www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktion 4. Grades
Funktion 4. Grades < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion 4. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 So 14.12.2008
Autor: schueler_sh

Aufgabe
Eine zur Y-Achse symetrische Parabel vierten Grades berührt die X-Achse in den Punkten P1 (-2/0) und P2 (2/0). Sie hat den Tiefpunkt T (0/-4).

Ich weiß nicht mehr weiter, wie ich es lösen soll.

[mm] a_{4}x^4+a_{3}x^3+a_{2}x^2+a_{1}x+a_{0} [/mm]
[mm] a_{4}x^4+a_{2}x^2+a_{0} [/mm]

I.    [mm] f_{(-2)}=0=16a_{4}+4a_{2}+a_{0} [/mm]
II.   [mm] f_{(2)}=0=16a_{4}+4a_{2}+a_{0} [/mm]
III.  [mm] f_{(0)}=4= a_{0}=4 [/mm]

        
Bezug
Funktion 4. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 14.12.2008
Autor: Adamantin


> Eine zur Y-Achse symetrische Parabel vierten Grades berührt
> die X-Achse in den Punkten P1 (-2/0) und P2 (2/0). Sie hat
> den Tiefpunkt T (0/-4).
>  Ich weiß nicht mehr weiter, wie ich es lösen soll.
>  
> [mm]a_{4}x^4+a_{3}x^3+a_{2}x^2+a_{1}x+a_{0}[/mm]
>  [mm]a_{4}x^4+a_{2}x^2+a_{0}[/mm]
>  
> I.    [mm]f_{(-2)}=0=16a_{4}+4a_{2}+a_{0}[/mm]
>  II.   [mm]f_{(2)}=0=16a_{4}+4a_{2}+a_{0}[/mm]
>  III.  [mm]f_{(0)}=4= a_{0}=4[/mm]  

Der wichtigste Hinweis ist die Symmetrie, wodurch alle unegraden Teile aus der Gleichung wegfallen. Somit bleibt dir eine Gleichung - wie du richtig erkannt hast, mit [mm] x^4, x^2 [/mm] und einem konstanten Teil. Demnach brauchst du drei Gleichungen zum Lösen. Und die hast du doch, oder? Also wo ist dein Problem?? Du kannst sogar 4 Gleichungen aufstellen, denn du hast drei Punkte (auch der TP ist ein Punkt) und einen TP, womit du eine vierte Gleichung mit der ersten Ableitung aufstellen kannst.

Sorry sehe jetzt dein Problem, du musst den TP noch verwenden: f(0)=-4

Bezug
                
Bezug
Funktion 4. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 So 14.12.2008
Autor: schueler_sh

Ich weiß nicht, ob der Ansatz richtig ist zur Lösung?
[mm] a_{0} [/mm] in I
[mm] 4=16a_{4}+4a_{2} [/mm]  |/4
[mm] 0=4a_{4}+a_{2} [/mm]

Bezug
                        
Bezug
Funktion 4. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 So 14.12.2008
Autor: snp_Drake

Also, wenn du die letzte Gleichung durch 4 teilst, bekommst du auf der linken Seite 1 und nicht 0!

[mm] 1=4a_{4}+a_{2} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de