Funktion Lebesgue-integrierbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:06 Sa 01.12.2007 | Autor: | Blueevan |
Aufgabe | Berechnen Sie:
[mm] \limes_{t\rightarrow\infty}\integral_{0}^{\infty}{\bruch{xt²}{t^{4}+xt²+x^{6} }dx}
[/mm]
Hinweis: [mm] \bruch{xt²}{t^{4}+xt²+x^{6}} \le [/mm] min (1, [mm] x^{-2}) [/mm] |
Hallo!
Brauche dringend Hilfe bei dieser Aufgabe.
Ich würde gerne den Satz über majorisierte Konvergenz anwenden, da ich hier im Hinweis bereits eine obere Funktion im Hinweis gegeben hab.
Leider weiß ich nicht genau, ob meine Funktion Lebesgue-integrierbar ist, da hier ja nur das uneigentliche Riemann-Integral gegeben ist und wir in unserer Vorlesung nichts darüber gelernt haben wie uneigentlich Riemann und Lebesgue-integrierbar zusammenhängen.
Messbar ist die Funktion ja, da sie stetig ist, aber ich weiß nicht wie ich einfache Funktionen konstruieren soll, die drüber und drunter liegen und deren Lebesgue-Integral =0 ist (das Lebesgue-Integral meiner Funktion müsste ja 0 sein).
Vielen Dank schon mal für die Hilfe,
Blueevan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:27 Sa 01.12.2007 | Autor: | Hund |
Hallo,
du kannst hier den Satz über majorisierte Konvergenz verwenden. Eine Majorante hast du ja bereits. Du musst jetzt zeigen, dass die Lebesgue-Integrierbar ist.
Deine majorante lautet:
[mm] g(x)=min(1,x^{-2}) [/mm] für x aus (0,unendlich).
Dazu zeigst du, dass
[mm] \integral_{0}^{infty}{g(x) dx} [/mm] exestiert. Das ist ein Satz, den ihr bestimmt in derVorlesung hattet. Das ist jetzt aber nicht schwer, denn du kannst g(x) explizit angeben als:
g(x)=1 für x aus (0,1) und
[mm] g(x)=x^{-2} [/mm] für x>1.
Jetzt kannst du leicht zeigen, dass das Integral exestiert ung g Lebesgue-integrierbar ist. Dann wendest du noch den Satz über majorisierte Konvergenz.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:32 Sa 01.12.2007 | Autor: | Blueevan |
Ja, soweit hab ich verstanden. Aber ich muss doch vor allem noch zeigen, dass meine Funktion [mm] f_{t} [/mm] Lebesgue-integrierbar ist, da mir der Satz von der majorisierten Konvergenz lediglich etwas über das Lebesgue-Integral sagt.
Und selbst wenn ich das geschafft hätte, woher wüsste ich dann dass das uneigentlich Riemann-Integral, was ich ja berechnen muss, gleich dem Lebesgue-Integral ist?
Vielen Dank für deine Hilfe,
Blueevan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:34 Sa 01.12.2007 | Autor: | Hund |
Hallo,
es gibt folgenden Satz:
Sei f eine auf (a,b) lokal integrierbare Funktion (f muss also auf jeder kompakten Teilmenge von (a,b) Regel-integrierbar sein). f ist genau dann Lebesgue-integrierbar auf (a,b) wenn das uneigentliche Integral
[mm] \integral_{a}^{b}{lf(x)l dx} [/mm] exestiert.
Es gilt: Das Integral über (a,b) (im Sinne von Lebesgue) stimmt mit dem uneigentlichen Integral von f über (a,b) überein.
Durch Anwenden des Satzes kannst du zeigen, dass deine Funktionen Lebesgue-integrierbar sind und das die Integrale auch wirklich übereinstimmen.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:30 Sa 01.12.2007 | Autor: | Blueevan |
Hallo Hund,
vielen Dank für deine liebe Hilfe. Der Satz wäre hier echt praktisch. Leider hatten wir ihn nicht in der Vorlesung und dürfen ihn daher nicht benutzen :(
Gibt es noch eine andere Möglichkeit das zu zeigen?
Lieben Gruß,
Blueevan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:31 Sa 01.12.2007 | Autor: | Hund |
Hallo,
du kannst diesen Satz dann einfach beweisen. Da ihr den Satz über majorisierte Konvergenz schon hattet, hattet ihr wahrscheinlich auch den über monotone Konvergenz.
Damit beweist du folgenden Satz, aus dem dann der obere Satz folgt:
Gegeben seien Mengen [mm] A_{j}, [/mm] so dass ihre charakteristische Funktion Lebesgue-integrierbar ist und [mm] A_{j} [/mm] enthalten in [mm] A_{j+1}. [/mm] Es sei A die Vereinigung. Eine Funktion f auf A ist genau dann Lebesgue-integrierbar, wenn ihre Einschränkungen auf Aj Lebesgue-integrierbar sind, und es gilt:
sup [mm] \integral_{A_{j}}{lf(x)l dx} [/mm] < unendlich. Ist dies der Fall, so gilt:
[mm] \integral_{A_{j}}{f(x) dx} [/mm] konvergiert gegen [mm] \integral_{A}{f(x) dx} [/mm] für j gegen unendlich.
Kannst du diesen Satz alleine beweisen. Du musst nur die vorkommenden Integrale mithilfe der charakteristischen Funktion als Integrale über IR schreiben und den Satz über monotone Konvergenz verwenden. Aus diesem Satz folgt dann der obere Satz.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:44 Sa 01.12.2007 | Autor: | Blueevan |
Hallo Hund,
vielen Dank für den Tipp :)
Hab jetzt geschafft zu zeigen, dass die Funktion Lebesgue integrierbar ist , also dass nach dem Satz der monotonen Konvergenz gilt
[mm] \limes_{T\rightarrow\infty}\integral_{0}^{T}{f(x) d\lambda} [/mm] existiert. Leider weiß ich jetzt immer noch nicht wie ich zeigen soll, dass das Lebesgue-Integral gleich dem uneigentlichen Riemann-Integral ist, da wir im Satz über monotone Konvergenz nur etwas über das Lebesgue-Integral ausgesagt haben.
Kannst du mir nochmal helfen?
Liebe Grüße,
Blueevan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:06 So 02.12.2007 | Autor: | Hund |
Hallo,
du kannst doch den oberen Satz mithilfe desSatzes über monotone Konvergenz beweisen. Dann folgt der doch der Zusammenhang zwischen Lebesgue-Integralen und uneigentlichen Integralen, weil die Lebesgue-Integrale über den Aj gewöhnliche Integrale sind.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:44 So 02.12.2007 | Autor: | Blueevan |
Hallo Hund,
ich stand ziemlich auf dem Schlauch, sorry!
Danke für deine Hilfe :)
|
|
|
|