www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Funktion der Biegelinie
Funktion der Biegelinie < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion der Biegelinie: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:55 So 17.01.2010
Autor: egal

Hallo,

ich komme irgendwie bei der Ermittlung der Integrationskonstanten nicht weiter bei folgender Aufgabe:

[Dateianhang nicht öffentlich]


Ich habe hier mit der  Variante gerechnet, wo man einfach aufintegriert also von EIw'''' bis EIw.

jetzt habe ich irgendwie nicht genug Bedingungen.

Es ist ja:

[mm] w'(x_{1}=0)=0 [/mm]

[mm] w(x_{1}=0)=0 [/mm]

[mm] M(x_{1}=l)=0 [/mm]

für die Rechte Seite dann:


[mm] M(x_{2}=0)=0 [/mm]

[mm] M(x_{2}=l)=0 [/mm]

[mm] w(x_{2}=l)=0 [/mm]

gibt es da sonst noch was, was ich nicht kenne an Rand-bzw. Übergangsbedingungen?

Jetzt gibt es doch auch die Variante, wo man ja anhand des Momentenverlaufs ab EIw'' rechnen kann. Dadurch würde sich ja theoretisch mein Problem beheben, aber es muss doch auch so gehen? Kann mir einer helfen?


Meine zweite Frage:

Eine Biege-DGL fängt ja immer mit
EIw''''=q an

bei einer konstanten Streckenlast wäre das dann:

[mm] EIw''''=q=q_{0} [/mm]

bei einer dreieckartigen Streckenlast heißt es dann:

[mm] EIw''''=q=\bruch{q_{0}}{l}x [/mm]

wovon ist denn das abhängig was dann da steht, das sehe ich nicht so ganz (bei const. Streckenlast also: [mm] q_{0} [/mm] und einer dreieckartigen Streckenlast: [mm] \bruch{q_{0}}{l}x)?? [/mm]

Wie würde es dann heißen, wenn ein Träger durch eine quadratische Streckenlast (Parabel 2. Ordnung) belastet wird?


Danke sehr

Schönen Abend noch


MFG

egal



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Funktion der Biegelinie: Randbedingungen
Status: (Antwort) fertig Status 
Datum: 00:37 Mo 18.01.2010
Autor: Loddar

Hallo egal!



> jetzt habe ich irgendwie nicht genug Bedingungen.

Wieso denn nicht?

  

> Es ist ja:
>  
> [mm]w'(x_{1}=0)=0[/mm]
>  
> [mm]w(x_{1}=0)=0[/mm]
>  
> [mm]M(x_{1}=l)=0[/mm]
>  
> für die Rechte Seite dann:
>  
>
> [mm]M(x_{2}=0)=0[/mm]
>  
> [mm]M(x_{2}=l)=0[/mm]
>  
> [mm]w(x_{2}=l)=0[/mm]

[ok]

  

> gibt es da sonst noch was, was ich nicht kenne an Rand-bzw.
> Übergangsbedingungen?

Mir fällt spontan nichts ein ...



> Jetzt gibt es doch auch die Variante, wo man ja anhand des
> Momentenverlaufs ab EIw'' rechnen kann. Dadurch würde sich
> ja theoretisch mein Problem beheben, aber es muss doch auch
> so gehen? Kann mir einer helfen?

Da es sich hier um ein statisch bestimmtes System handelt, kann man die Momentenlinie auch direkt ermitteln.


Gruß
Loddar


Bezug
                
Bezug
Funktion der Biegelinie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 Mo 18.01.2010
Autor: egal

könnte ich jetzt auch bspw. sagen, obwohl ich ja in zwei Bereiche unterteilt habe, dass folgendes gilt

[mm] w_1=w_2, [/mm] wegen dem Momentengelenk?

Bezug
                        
Bezug
Funktion der Biegelinie: richtig
Status: (Antwort) fertig Status 
Datum: 11:09 Mo 18.01.2010
Autor: Loddar

Hallo egal!


Ja!


Gruß
Loddar


Bezug
                                
Bezug
Funktion der Biegelinie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Mo 18.01.2010
Autor: egal

ok danke, habs gelöst.

Bezug
        
Bezug
Funktion der Biegelinie: Belastungsfunktion
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 18.01.2010
Autor: Loddar

Hallo egal!


> bei einer konstanten Streckenlast wäre das dann:
>  
> [mm]EIw''''=q=q_{0}[/mm]
>  
> bei einer dreieckartigen Streckenlast heißt es dann:
>  
> [mm]EIw''''=q=\bruch{q_{0}}{l}x[/mm]

Wenn die Last nach rechts hin ansteigt: ja.

  

> wovon ist denn das abhängig was dann da steht, das sehe
> ich nicht so ganz (bei const. Streckenlast also: [mm]q_{0}[/mm] und
> einer dreieckartigen Streckenlast: [mm]\bruch{q_{0}}{l}x)??[/mm]

siehe oben

  

> Wie würde es dann heißen, wenn ein Träger durch eine
> quadratische Streckenlast (Parabel 2. Ordnung) belastet wird?

Im Prinzip kannst Du dann jeweils eine kleine MBSteckbriefaufgabe lösen.

In Deinem Fall mit der Parabel (auf einem Einfeldträger) gilt:
$$q(x) \ = \ [mm] -\bruch{4*q_0}{l^2}*\left(x-\bruch{l}{2}\right)^2+q_0$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Funktion der Biegelinie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:10 Mo 18.01.2010
Autor: egal

wie meinst du das, wenn sie nach rechts hoch steigt?...

würde es nach links steigen, hieße es dann: [mm] -\bruch{qo}{l}*l? [/mm]


das mit dieser steckbriefaufgabe geht iwie nicht, da steht, dass diese seite noch nicht existiert.

Bezug
                        
Bezug
Funktion der Biegelinie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mo 18.01.2010
Autor: egal

habs doch!... ist die simple steigung, die man über die randbedingung ermitteln kann

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de