www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Funktion ein-, zweimal difbar
Funktion ein-, zweimal difbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion ein-, zweimal difbar: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 12.10.2010
Autor: Peano08

Aufgabe
Wir betrachten die Funktion f: [mm] \IR [/mm] -> [mm] \IR [/mm] , x -> x*|x|.

(a) Ist f differenzierbar?
(b) Ist f zweimal differenzierbar?

Hallo,
also Differenzierbarkeit weisen wir mit [mm] \lim_{x=a} [/mm] (x|x|-a|a|)/(x-a) für a [mm] \in \IR [/mm] nach.

ich hätte die Idee gehabt, dass ich die Diffbarkeit für -a [mm] \in \IR^- [/mm] , a=0 und a [mm] \in \IR [/mm] prüfe.

Für x=0:

[mm] \lim_{x->0} [/mm] (x|x|)/x = [mm] \lim_{x->0} [/mm] |x| = 0

Nur für die beiden anderen Intervalle komme ich nicht weiter, als dass ich die Gleichung aufstelle...

Grüße,
Benjamin

        
Bezug
Funktion ein-, zweimal difbar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Di 12.10.2010
Autor: fred97


> Wir betrachten die Funktion f: [mm]\IR[/mm] -> [mm]\IR[/mm] , x -> x*|x|.
>
> (a) Ist f differenzierbar?
> (b) Ist f zweimal differenzierbar?
>  Hallo,
> also Differenzierbarkeit weisen wir mit [mm]\lim_{x=a}[/mm]
> (x|x|-a|a|)/(x-a) für a [mm]\in \IR[/mm] nach.
>
> ich hätte die Idee gehabt, dass ich die Diffbarkeit für
> -a [mm]\in \IR^-[/mm] , a=0 und a [mm]\in \IR[/mm] prüfe.



>
> Für x=0:
>
> [mm]\lim_{x->0}[/mm] (x|x|)/x = [mm]\lim_{x->0}[/mm] |x| = 0

O.K.

>  
> Nur für die beiden anderen Intervalle komme ich nicht
> weiter, als dass ich die Gleichung aufstelle...


Für x >0 ist f(x) [mm] =x^2. [/mm] Diese Funktion ist auf (0, [mm] \infty) [/mm] tadellos differenzierbar und f'(x)= 2x

So, nun bearbeite Du den Fall x<0.

FRED

>
> Grüße,
> Benjamin


Bezug
                
Bezug
Funktion ein-, zweimal difbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Di 12.10.2010
Autor: Peano08

mhh,
du hast recht...

Also dann für x<0:  f(x) = [mm] -x^2 [/mm]

[mm] \lim_{x->a} [/mm] (x+a) = 2a

Damit ist f auf ganz [mm] \R [/mm] differenzierbar.

Für f ist 2-mal diffbar?

für x=0 ist f'(x) = 0

[mm] \lim_{x->0} [/mm] 0/0 ist nicht definiert. Damit ist f nicht zweimal differenzierbar.



Bezug
                        
Bezug
Funktion ein-, zweimal difbar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 12.10.2010
Autor: fred97


> mhh,
> du hast recht...
>
> Also dann für x<0:  f(x) = [mm]-x^2[/mm]

Also f'(x) = -2x

>  
> [mm]\lim_{x->a}[/mm] (x+a) = 2a

?????????????????????????????????????????????

>
> Damit ist f auf ganz [mm]\R[/mm] differenzierbar.


Jo


>
> Für f ist 2-mal diffbar?
>
> für x=0 ist f'(x) = 0
>  
> [mm]\lim_{x->0}[/mm] 0/0 ist nicht definiert. Damit ist f nicht
> zweimal differenzierbar.

Das ist doch keine Begründung !!

Es ist doch f'(x)=2|x| für jedes x [mm] \in \IR [/mm]

Ist die Funktion x [mm] \to [/mm] 2|x| differenzierbar (in 0) ?

FRED

>
>  


Bezug
                                
Bezug
Funktion ein-, zweimal difbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Di 12.10.2010
Autor: Peano08

Hi,
mist, ist ein minus zuviel reingerutscht:
[mm] \lim_{n->a} (-x^2+a^2)/(x-a) [/mm] = -2x

f'(x) = 2|x|

Da die Betragsfunktion in 0 zwar stetig, aber nicht differenzierbar ist, ist f nicht zweimal differenzierbar.

Grüße,
Benjamin

Bezug
                                        
Bezug
Funktion ein-, zweimal difbar: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 17:27 Di 12.10.2010
Autor: Loddar

Hallo Benjamin!


> mist, ist ein minus zuviel reingerutscht:
> [mm]\lim_{n->a} (-x^2+a^2)/(x-a)[/mm] = -2x

Im Ergebnis des Grenzwertes für [mm] $x\rightarrow [/mm] a$ darf aber kein $x_$ mehr auftreten.


> f'(x) = 2|x|

[ok]


> Da die Betragsfunktion in 0 zwar stetig, aber nicht
> differenzierbar ist, ist f nicht zweimal differenzierbar.

[ok] Wenn Du diese Eigenschaft der Betragsfunktion verwenden darfst, bist Du fertig.
Ansonsten musst Du dies auch noch separat zeigen.


Gruß
Loddar



Bezug
                                                
Bezug
Funktion ein-, zweimal difbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 12.10.2010
Autor: Peano08

Danköööö.

yup a statt x, hab mich verschrieben...

Grüße,
benjamin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de