www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktion einer Parabel
Funktion einer Parabel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion einer Parabel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:45 Fr 21.02.2014
Autor: nevo99

Aufgabe
Wie kann ich die Funktion einer Parabel bestimmen, wenn ich den Graph habe?



Wie kann ich die Funktion einer Parabel von dem Graph ablesen?
Ich habe bereits raus gefunden dass man die Scheitelpunktform verwenden kann.

die geht ja a*(x - xs) +ys
xs = x Koordinate des Scheitelpunktes, ys = y Koordinate des Scheitelpunktes.

aber wie bekomme ich a heraus?

        
Bezug
Funktion einer Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Fr 21.02.2014
Autor: M.Rex

Hallo

> Wie kann ich die Funktion einer Parabel bestimmen, wenn ich
> den Graph habe?

>
>

> Wie kann ich die Funktion einer Parabel von dem Graph
> ablesen?
> Ich habe bereits raus gefunden dass man die
> Scheitelpunktform verwenden kann.

>

> die geht ja a*(x - xs) +ys
> xs = x Koordinate des Scheitelpunktes, ys = y Koordinate
> des Scheitelpunktes.

>

> aber wie bekomme ich a heraus?

Um den Streckfaktor a herauszubekommen, brauchst du einen weiteren Punkt neben dem Scheitelpunkt, oder die Angabe, dass es eine Normalparabel ist, denn dann ist a=1 (oder, bei einer gespiegelten Normalparabel a=-1)

Beispiel:
Der Scheitelpunkt S(-3|5) ist gegeben und der Punkt P(-4/1)
Dann ist, nach einsetzen des Scheitels

[mm] f(x)=a\cdot(x-(-3))^{2}+5=a\cdot(x+3)^{2}+5 [/mm]

Nun setze die Koordinaten von P ein, dann bekommst du
[mm] 1=a\cdot(-4+3)^{2}+5 [/mm]
[mm] \Leftrightarrow-4=a\cdot(-1)^{2} [/mm]
[mm] \Leftrightarrow-4=a [/mm]

Also bekommst du die Funktion

[mm] f(x)=-4\cdot(x+3)^{2}+5 [/mm]

Marius

Bezug
                
Bezug
Funktion einer Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Fr 21.02.2014
Autor: nevo99

Also danke schon mal für die Schnelle Antwort. Ich hab gerade nachgesehen, der Scheitelpunkt liegt bei S(-3|0) außerdem ist der Punkt P(0|1,5) ablesbar.

Daraus folgt:

f(x) = a * [mm] (x-(-3))^2 [/mm] +5
      
       = a * [mm] (x+3)^2 [/mm]  + 5  jetzt den Punkt P einsetzen >>

    1,5 = a * ( [mm] 0+3)^2 [/mm] +5

    3,5 = 9a

      a = 0,39

stimmt das soweit oder habe ich falsch aufgelöst?

ansonsten wäre es

f(x) = [mm] 0,39*(x+3)^2 [/mm] +5

aber muss ich jetzt nicht noch die klammer mit der binomischen Formel lösen?

mfg Nevzat



Bezug
                        
Bezug
Funktion einer Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Fr 21.02.2014
Autor: M.Rex

Hallo

> Also danke schon mal für die Schnelle Antwort. Ich hab
> gerade nachgesehen, der Scheitelpunkt liegt bei S(-3|0)
> außerdem ist der Punkt P(0|1,5) ablesbar.

>

> Daraus folgt:

>

> f(x) = a * [mm](x-(-3))^2[/mm] +5

Nein, die y-Koordinate des Scheitels ist doch hier die 0, also
[mm] f(x)=a\cdot(x-(-3))^{2}+0=a\cdot(x+3)^{2} [/mm]

>

> = a * [mm](x+3)^2[/mm] + 5 jetzt den Punkt P einsetzen >>

Ja, aber in die richtige Funktion. Dann bekommst du
[mm] 1,5=a\cdot(0+3)^{2} [/mm]
[mm] \Leftrightarrow1,5=9a [/mm]
[mm] \Leftrightarrow\frac{1}{6}=a [/mm]

>

> 1,5 = a * ( [mm]0+3)^2[/mm] +5

>

> 3,5 = 9a

>

> a = 0,39

>

> stimmt das soweit oder habe ich falsch aufgelöst?

Du hast die Scheitelpunktform falsch angewandt

>

> ansonsten wäre es

>

> f(x) = [mm]0,39*(x+3)^2[/mm] +5

Du bekommst also

[mm] f(x)=\frac{1}{6}(x+3)^{2} [/mm]

>

> aber muss ich jetzt nicht noch die klammer mit der
> binomischen Formel lösen?

Warum solltest du das müssen? Die Parabel in der Scheitelpunktform anzugeben, ist vollkommen legitim.

>

> mfg Nevzat

Marius
>

Bezug
        
Bezug
Funktion einer Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Fr 21.02.2014
Autor: DieAcht

Hallo,


Guck dir mal dazu den Artikel von Wikipedia []hier an.
Falls du dazu fragen hast, dann stell dieser hier.

Du kannst es übrigens auch anders rum zu deiner eigenen
Übung machen. Schreib dir eine quadratische Funktion

      $f(x)=ax+bx+c$ mit [mm] $a,b,c\in\IR$ [/mm] und [mm] $a\not=0$ [/mm]

und zeichne sie dir auf. Damit lernst du es dann auch. ;-)

Hier ein paar Aufgaben für dich:

      [mm] $f(x)=x^2 [/mm]

      [mm] g(x)=x^2-2 [/mm]

      [mm] h(x)=3x^2+4 [/mm]

      [mm] j(x)=2x^2+2x+2 [/mm]

      [mm] k(x)=-2x^2+4x-3$ [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Funktion einer Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Fr 21.02.2014
Autor: nevo99

Danke für die schnelle Antwort und den Link!
Hab nicht ganz verstanden was ich mit den Funktionen machen soll? Soll ich die zeichnen?
Wäre besser wenn ich ein Paar Graphen hätte von denen ich die Funktion bestimmen könnte zur Übung.

Bezug
                        
Bezug
Funktion einer Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Fr 21.02.2014
Autor: DieAcht

Hallo,


> Danke für die schnelle Antwort und den Link!
> Hab nicht ganz verstanden was ich mit den Funktionen machen
> soll? Soll ich die zeichnen?
> Wäre besser wenn ich ein Paar Graphen hätte von denen ich
> die Funktion bestimmen könnte zur Übung.

Ja, zeichne sie. Im Prinzip ist es für das Verstehen egal
ob du einen vorgegebenen Graphen hast, den du modellieren
sollst, oder eine Funktion gegeben ist, die du zeichnen
sollst.

Bei beiden Richtungen musst du praktisch das Gleiche anwenden.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de