www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Funktion finden
Funktion finden < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Sa 12.04.2014
Autor: Spitzname786779

Aufgabe
-

Ich suche f:R_+ [mm] \to [/mm] [0,1] mit

f(x) / f(y) = (y+2) / (x+2)

Weiss nicht wie man das loesen soll, obwohl es so einfach aussieht.

Als Randbedinungen habe ich nur Bild(f) = [0,1]

Wie geht das? Kommt aus einem privaten Problem, daher keine Aufgabenstellung und auck kA was fuer ein Typ von Problem das ist.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Sa 12.04.2014
Autor: Sax

Hi,

du wirst die Voraussetzungen abschwächen müssen.

Wenn  f(x) / f(y) = (y+2) / (x+2)  für alle [mm] x,y\in\IR^+ [/mm]  gelten soll und außerdem 0 im Bildbereich von f liegen soll, dann gibt es ein [mm] x_0 [/mm] mit [mm] f(x_0)=0. [/mm]

Dann wird weiter [mm] \bruch{f(x_0)}{f(y)}=0=\bruch{y+2}{x_0+2}. [/mm]
Da aber y=-2 nicht im Definitionsbereich von f liegt, sehe ich schwarz.

Gruß Sax.

Bezug
                
Bezug
Funktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Sa 12.04.2014
Autor: Spitzname786779

Ah ja, sehr gut bemerkt.

Bild ist auch genauer (0,1], f(x) = 0 sollte erst im limit x [mm] \to \inf [/mm] errreicht werden

Bezug
        
Bezug
Funktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Sa 12.04.2014
Autor: Al-Chwarizmi


> -
>  Ich suche f:R_+ [mm]\to[/mm] [0,1] mit
>  
> f(x) / f(y) = (y+2) / (x+2)
>  
> Weiss nicht wie man das loesen soll, obwohl es so einfach
> aussieht.
>  
> Als Randbedinungen habe ich nur Bild(f) = [0,1]
>  
> Wie geht das? Kommt aus einem privaten Problem, daher keine
> Aufgabenstellung und auck kA was fuer ein Typ von Problem
> das ist.



Hallo und

          [willkommenmr]

probier's doch mal mit    $\ f(x)\ =\ [mm] \frac{786779}{x+2}$ [/mm]   !

Und dann kannst du versuchen, den Zähler so anzupassen,
dass die Werte auch in den vorgegebenen Zielbereich zu
liegen kommen ...    ;-)

LG

Al-Chwarizmi




Bezug
                
Bezug
Funktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Sa 12.04.2014
Autor: Spitzname786779

Yo so einfach ist das wohl. Danke dir! Kann man hier Karma geben oder sowas?

Bezug
        
Bezug
Funktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 So 13.04.2014
Autor: fred97

Eine Funktion f: [mm] \IR^+ \to \IR [/mm] mit

  f(x)(x+2)=f(y)(y+2)  für alle x,y >0

und

Bild(f)=(0,1]


gibt es nicht !

Annahme: es gibt eine solche Funktion. Mit y=1 folgt

    f(x)(x+2)=3f(1)

f ist also von der Form

    [mm] f(x)=\bruch{a}{x+2} [/mm]  mit a [mm] \ne [/mm] 0.

Es muss a>0 sein (anderenfalls wäre Bild(f) [mm] \subseteq [/mm] ( - [mm] \infty,0)). [/mm]

Dann ist f streng fallend. Wegen 1 [mm] \in [/mm] Bild(f), gibt es ein [mm] x_0>0 [/mm] mit [mm] f(x_0)=1. [/mm]

Ist nun 0<z< [mm] x_0, [/mm] so ist

     [mm] f(z)>f(x_0)=1. [/mm]

Das ist aber ein Widerspruch zu Bild(f)=(0,1].

FRED

Bezug
                
Bezug
Funktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Mo 14.04.2014
Autor: fred97

Noch eine Bemerkung:

ist  $f: [mm] \IR^+ \to \IR [/mm] $ eine Funktion mit

  f(x)(x+2)=f(y)(y+2)  für alle x,y >0,

so haben wir gesehen, dass f von der Form $ [mm] f(x)=\bruch{a}{x+2} [/mm] $ ist.

Fall 1: a=0. Dann ist [mm] Bild(f)=\{0\}. [/mm]

Fall 2: a>0. Dann ist Bild(f)=(0, [mm] \bruch{a}{2}) [/mm]

Fall 3: a<0. Dann ist [mm] Bild(f)=(\bruch{a}{2}, [/mm] 0).

Bild(f) ist also niemals ein halboffenes Intervall.

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de