www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Funktion homogen?
Funktion homogen? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion homogen?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:30 So 02.05.2010
Autor: egal

Aufgabe
y'=f(t,y)

[mm] f(t,y)=\bruch{2ty}{t^2+y^2} [/mm]

ist die Funktion homogen??

Hallo nochmals,

dazu habe ich folgendes abgeschrieben:

sei [mm] \alpha\in\IR [/mm]

-> [mm] f(\alpha [/mm] t, [mm] \alpha y)=\bruch{2 \alpha^2 +ty}{\alpha^2t^2+ \alpha^2 y^2}= \bruch{2ty}{t^2+y^2} [/mm]

es ist also homogen, 0-ten Grades.

Ich verstehe hier irgendwie gar nicht, was beabsichtigt wird mit dem [mm] \alpha [/mm] ... und wieso [mm] \bruch{2 \alpha^2 +ty}{\alpha^2t^2+ \alpha^2 y^2}= \bruch{2ty}{t^2+y^2} [/mm]
ist mir auch ein rätsel... das [mm] \alpha^2 [/mm] kann man doch nicht kürzen...

hab übrigens richtig abgeschrieben, weil ein kommilitone es ebenfalls so hat!




        
Bezug
Funktion homogen?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 02.05.2010
Autor: schachuzipus

Hallo egal,

> y'=f(t,y)
>  
> [mm]f(t,y)=\bruch{2ty}{t^2+y^2}[/mm]
>  
> ist die Funktion homogen??
>  Hallo nochmals,
>  
> dazu habe ich folgendes abgeschrieben:
>  
> sei [mm]\alpha\in\IR[/mm]
>  
> -> [mm]f(\alpha[/mm] t, [mm]\alpha y)=\bruch{2 \alpha^2 \red{+}ty}{\alpha^2t^2+ \alpha^2 y^2}= \bruch{2ty}{t^2+y^2}[/mm]

Das [mm] \red{+} [/mm] hast du falsch abgeschrieben.

Du musst ja auch nicht allem trauen, was man dir so vorsetzt.

Setze doch selber [mm] $\alpha$ [/mm] da ein, dann siehst du doch auf einen Blick, dass [mm] $f(\alpha t,\alpha y)=\frac{2(\alpha t)(\alpha y)}{(\alpha t)^2+(\alpha y)^2}=\frac{\alpha^2\cdot{}2ty}{\alpha^2\cdot{}(t^2+y^2)}=f(t,y)=\alpha^0\cdot{}f(t,y)$ [/mm] ist ...

>  
> es ist also homogen, 0-ten Grades.
>  
> Ich verstehe hier irgendwie gar nicht, was beabsichtigt
> wird mit dem [mm]\alpha[/mm] ...

Wie habt ihr denn "Homogenität vom Grad k einer Fkt" definiert?

> und wieso [mm]\bruch{2 \alpha^2 +ty}{\alpha^2t^2+ \alpha^2 y^2}= \bruch{2ty}{t^2+y^2}[/mm]
>  
> ist mir auch ein rätsel... das [mm]\alpha^2[/mm] kann man doch
> nicht kürzen...

Falsch abgeschrieben!

>
> hab übrigens richtig abgeschrieben, weil ein kommilitone
> es ebenfalls so hat!

Dann hat derjenige, der es aufgeschrieben hat, nen Fehler gemacht.

Wei gesagt, Verstand einschalten und nicht alles glauben ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de