www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Funktion mit 2 Variablen
Funktion mit 2 Variablen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion mit 2 Variablen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:33 Sa 16.10.2004
Autor: Speedball

Hallo,

steh hier gerade voll auf dem Schlauch, hoffe das ihr mir hier weiter helfen könnt!?

Aufgabe 1:

zu jedem t > 0 sind die Funktionen ft und gt gegeben durch

ft (x) = -  [mm] \bruch{1}{18} x^{3} [/mm] +  [mm] \bruch{1}{2} [/mm] t [mm] x^{2.5} [/mm]    ,  

gt (x) =  [mm] \bruch{t}{6} x^{2} [/mm]         ; x [mm] \in \IR [/mm]

das Schaubild ft sei Kt , das Schaubild gt sei Ct

a) untersuchen Sie Kt auf gemeinsame Punkte mit der x-Achse, Extrem - und Wendepunkte.

wie Löse ich hier auf?

Güße Speedy


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion mit 2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Sa 16.10.2004
Autor: andreas

hi Speedball

ich nehm an, du meinst

[m] f_t(x) = -\frac{1}{18}x^3 + \frac{1}{2}tx^{2,5} = \frac{1}{2}x^\frac{5}{2} \left( -\frac{1}{9}\sqrt{x} + t \right) [/m]

wobei [m] x \geq 0 [/m],sonst wäre [m] x^{2,5} = x^\frac{5}{2} [/m] (im reellen) gar nicht definiert.
die nullstellen (schnittpunkte mit der $x$-achse) kannst du nun aus der letzten darstellung ganz einfach ablesen, da ein produkt genau dann null ist, wenn einer seiner faktoren null ist, also hier: [m] f_t(x) = 0[/m] genau dann wenn [m] \frac{1}{2}x^\frac{5}{2} = 0 [/m] oder wenn [m] -\frac{1}{9}\sqrt{x} + t = 0 [/m]. d.h. [m] x_1 = 0 [/m] oder [m] x_2 = 81t^2 [/m]. somit sind die schnittpunkte mit der $x$-achse [m]N_1(0 | 0) [/m] und [m] N_2(81t^2 | 0) [/m].

für extrem- und wendepunkte musst du die funktion 2-mal ableiten und dann die entsprechende ableitung gleich null setzen. probiere doch mal, ob du das selber hinkriegst, sonst kannst du dich ja nochmal melden.

grüße
andreas

Bezug
                
Bezug
Funktion mit 2 Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Sa 16.10.2004
Autor: Speedball

Erstmal herzlichen Dank für die schnelle Antwort,
wobei ich nicht wirklich weiss ob ich damit klar komme was du mir da an den "Kopf geworfen" ;-) hast.

könntest du mir den Vorgang wie du auf   [mm] \left( -\frac{1}{9}\sqrt{x} + t \right) [/mm] $ gekommen bist erklären.
das selbe bei $ [mm] x_2 [/mm] = [mm] 81t^2 [/mm] $!?

thx und viele Grüße

Bezug
                        
Bezug
Funktion mit 2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Sa 16.10.2004
Autor: andreas

also, wie ich auf $ [mm] f_t(x) [/mm] = [mm] -\frac{1}{18}x^3 [/mm] + [mm] \frac{1}{2}tx^{2,5} [/mm] = [mm] \frac{1}{2}x^\frac{5}{2} \left( -\frac{1}{9}\sqrt{x} + t \right) [/mm] $ komme:
mann kan ja den größten gemeinsamen faktor der beiden summanden ausklammern, das ist hier eben [m] \frac{1}{2}x^\frac{5}{2} [/m]. den ersten summand kann man nämlich auch als [m] -\frac{1}{18}x^3 = -\frac{1}{9} \cdot \frac{1}{2}x^{\frac{5}{2} + \frac{1}{2}} = -\frac{1}{9} \cdot \frac{1}{2}x^\frac{5}{2}x^\frac{1}{2} [/m] darstellen (nach potenzgestezen - schau die mal in deiner formelsammlung nach, wenn die dir nicht klar sind).

nun muss man bei dem ausdruck [mm] $\frac{1}{2}x^\frac{5}{2} \left( -\frac{1}{9}\sqrt{x} + t \right) [/mm]  = 0$ nur noch untersuchen, wann jeder einzelne faktor gleich null ist. der erste ist offensichtlich genau dann gleich null, wenn [m] x = 0[/m], der zweite: [m] -\frac{1}{9}\sqrt{x} + t = 0 \; \Longleftrightarrow \; t = \frac{1}{9}\sqrt{x} \; \Longleftrightarrow \; 9t = \sqrt{x} \; \Longleftrightarrow \; 81t = x [/m].

vielleicht ist es jetzt klarr geworden.

grüße
andreas

Bezug
                                
Bezug
Funktion mit 2 Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 So 17.10.2004
Autor: Speedball


Super, herzlichen dank für die Mühe die du dir gemacht hast,
hat mehr sehr geholfen.

thx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de