www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Funktion transformieren
Funktion transformieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion transformieren: Idee
Status: (Frage) beantwortet Status 
Datum: 15:49 So 04.02.2007
Autor: jan32

Aufgabe
Der Graph von f [f(x)=(x-1)lnx] und die Koordinatenachsen begrenzen für x [mm] \le [/mm] 1 ein Flächenstück, das sich ins Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück den endlichen Inhalt 0,75 hat.

(... ich krieg das bestimmt raus, aber:)

Wir hatten beim Thema Volumenberechnung eines Rotationsparaboloiden um die y-Achse mal "Funktionen transformieren". Bsp.: y = 1/2 [mm] x^2, [/mm] dann ist x = [mm] \wurzel{2y} [/mm] ... dann noch die Integrationsgrenzen integrieren (aus [0;4] wird da [0;8]) ... und dann konnte man das Integral der transformierten Funktion nach dy berechnen, natürlich, weil Rotation noch unter Beachtung von [mm] \pi [/mm] und [mm] (f(x))^2 [/mm] ...

Frage: Geht das auch bei der obigen Funktion, kann man die auch transformieren, wenn ja dann wie, ich kriegs nämlich nicht raus, und dann das uneigentliche Integral bilden, bzw. so überprüfen, ob der Inhalt wiklich 0,75 beträgt? ...

Ich habe diese Frage noch in keinem anderen Forum gestellt.

        
Bezug
Funktion transformieren: so geht's
Status: (Antwort) fertig Status 
Datum: 16:31 So 04.02.2007
Autor: informix

Hallo jan32,

> Der Graph von f [f(x)=(x-1)lnx] und die Koordinatenachsen
> begrenzen für x [mm]\le[/mm] 1 ein Flächenstück, das sich ins
> Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück
> den endlichen Inhalt 0,75 hat.
>  (... ich krieg das bestimmt raus, aber:)
>  
> Wir hatten beim Thema Volumenberechnung eines
> Rotationsparaboloiden um die y-Achse mal "Funktionen
> transformieren". Bsp.: y = 1/2 [mm]x^2,[/mm] dann ist x =
> [mm]\wurzel{2y}[/mm] ... dann noch die Integrationsgrenzen
> integrieren (aus [0;4] wird da [0;8]) ... und dann konnte
> man das Integral der transformierten Funktion nach dy
> berechnen, natürlich, weil Rotation noch unter Beachtung
> von [mm]\pi[/mm] und [mm](f(x))^2[/mm] ...
>  
> Frage: Geht das auch bei der obigen Funktion, kann man die
> auch transformieren, wenn ja dann wie, ich kriegs nämlich
> nicht raus, und dann das uneigentliche Integral bilden,
> bzw. so überprüfen, ob der Inhalt wiklich 0,75 beträgt?
> ...
>  

Du denkst zu kompliziert!
[Dateianhang nicht öffentlich]

integriere zunächst mit einer festen unteren Grenze k:
[mm] \integral_{k}^{1}{f(x) \ dx} [/mm]
und bilde dann den Grenzwert [mm] \limes_{k\to0} [/mm] des Integrals.

Gruß informix

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de