www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktion und Ableitung
Funktion und Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion und Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:17 So 16.06.2013
Autor: Joker08

Aufgabe
Sei f: U [mm] \to \IR [/mm] mit

f(a,b):=kleinste reelle Nullstelle von [mm] x^2+ax+b [/mm]

Bestimmen Sie dafür:

a) einen möglichst großen offenen Definitionsbereich U [mm] \subseteq \IR^2 [/mm]

b) [mm] J_f(a,b) [/mm]

c) alle Richtungsableitungen


Also ich hab schon irgendwie meine probleme mir die funktion vorzustellen.

Die funktion ist also definiert als die kleinste Nullstelle von [mm] x^2+ax+b [/mm]

Dazu müsste ich ja erstmal wissen wann f(a,b)=0 ist.

Aber Nst. von funktionen aus dem [mm] \IR^n [/mm] kann man ja nicht so ohne weiteres bestimmen.

Kann mir jemand helfen ? Irgendwie verstehe ich die Aufgabe nicht so ganz

        
Bezug
Funktion und Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:04 So 16.06.2013
Autor: fred97

Die Funktion f ist wie folgt def.:

ist (a,b) [mm] \in [/mm] U , so betrachte die Funktion [mm] p(t)=t^2+at+b [/mm] und berechne die Nullstellen [mm] t_1 [/mm] und [mm] t_2 [/mm] von p.

Dann ist f(a,b):= min [mm] \{t_1,t_2 \} [/mm]

Beispiel: f(0,-1)=-1

In a) ist U so zu bestimmen, dass für (a,b) [mm] \in [/mm] U die Gl. [mm] t^2+at+b [/mm] reelle Lösungen hat, dass U offen ist und dass U "möglichst " groß ist.

FRED

Bezug
                
Bezug
Funktion und Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 So 16.06.2013
Autor: Joker08


> Die Funktion f ist wie folgt def.:
>  
> ist (a,b) [mm]\in[/mm] U , so betrachte die Funktion [mm]p(t)=t^2+at+b[/mm]
> und berechne die Nullstellen [mm]t_1[/mm] und [mm]t_2[/mm] von p.
>  
> Dann ist f(a,b):= min [mm]\{t_1,t_2 \}[/mm]

Okay, also das habe ich mal gemacht:

[mm] t^2+at+b=0 [/mm]

[mm] \gdw t^2+at=-b [/mm]


[mm] \gdw (t+\bruch{a}{2})^2=\bruch{a^2}{4}-b [/mm]

[mm] \gdw (t+\bruch{a}{2})^2=\bruch{a^2-4b}{4} [/mm]

[mm] \gdw t+\bruch{a}{2}=\pm \wurzel{\bruch{a^2-4b}{4}} [/mm] Was nur geht, wenn [mm] \bruch{a^2-4b}{4}\ge0 [/mm] ist.

[mm] \gdw t+\bruch{a}{2}=\pm \wurzel{\bruch{a^2-4b}{4}} [/mm]


[mm] \gdw [/mm] t = [mm] \pm \wurzel{\bruch{a^2-4b}{4}}-\bruch{a}{2} [/mm]


Dann ist f(a,b):= min $ [mm] \{ \bruch{\wurzel{a^2-4b}-2a}{2} , -\bruch{\wurzel{a^2-4b}-2a}{2} \} [/mm] $
  

> Beispiel: f(0,-1)=-1

Das würde dann auch passen.

> In a) ist U so zu bestimmen, dass für (a,b) [mm]\in[/mm] U die Gl.
> [mm]t^2+at+b[/mm] reelle Lösungen hat, dass U offen ist und dass U
> "möglichst " groß ist.

Okay, also muss  

[mm] a^2-4b\ge [/mm] 0

[mm] \gdw a^2\ge [/mm] 4b

Dass gilt schonmal für alle (a,b) [mm] \in [4,\infty) [/mm]

Für (a,b) [mm] \in \{0\} [/mm]

Für (a,b) [mm] \in (-\infty, [/mm] 0) ist die gleichung auch erfüllt.

Also darf [mm] (a,b)\in [/mm] U mit [mm] U:=\{ (-\infty, 0], [4,\infty)\} [/mm]

sein ?

> FRED


Bezug
                        
Bezug
Funktion und Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:01 Mo 17.06.2013
Autor: leduart

Hallo

> [mm]t^2+at+b=0[/mm]
>  
> [mm]\gdw t^2+at=-b[/mm]
>  
>
> [mm]\gdw (t+\bruch{a}{2})^2=\bruch{a^2}{4}-b[/mm]
>  
> [mm]\gdw (t+\bruch{a}{2})^2=\bruch{a^2-4b}{4}[/mm]
>  
> [mm]\gdw t+\bruch{a}{2}=\pm \wurzel{\bruch{a^2-4b}{4}}[/mm] Was nur
> geht, wenn [mm]\bruch{a^2-4b}{4}\ge0[/mm] ist.
>  
> [mm]\gdw t+\bruch{a}{2}=\pm \wurzel{\bruch{a^2-4b}{4}}[/mm]
>  
>
> [mm]\gdw[/mm] t = [mm]\pm \wurzel{\bruch{a^2-4b}{4}}-\bruch{a}{2}[/mm]
>  

richtig

> Dann ist f(a,b):= min [mm]\{ \bruch{\wurzel{a^2-4b}-2a}{2} , -\bruch{\wurzel{a^2-4b}-2a}{2} \}[/mm]

hier hast du einen Fehler, das 2 te  -a muss +2a sein.
kannst du das min nicht bestimmen?

> > Beispiel: f(0,-1)=-1
>  
> Das würde dann auch passen.
>  
> > In a) ist U so zu bestimmen, dass für (a,b) [mm]\in[/mm] U die Gl.
> > [mm]t^2+at+b[/mm] reelle Lösungen hat, dass U offen ist und dass U
> > "möglichst " groß ist.
>  
> Okay, also muss  
>
> [mm]a^2-4b\ge[/mm] 0
>
> [mm]\gdw a^2\ge[/mm] 4b
>  
> Dass gilt schonmal für alle (a,b) [mm]\in [4,\infty)[/mm]

das und das folgende ist sinnlos, U ist kein Intervall sondern eine 2 dimensionale Menge, also aus [mm] \IR^2, [/mm] das kannst du nicht als Intervall angeben, entweder einfach durch die Ungleichung oder geometrisch , als Gebiet im [mm] R^2 [/mm] das ausserhalb der Parabel  [mm] b=a^2/4 [/mm] liegt.

Gruss leduart

Bezug
                                
Bezug
Funktion und Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mo 17.06.2013
Autor: Joker08


> Hallo
>  
> > [mm]t^2+at+b=0[/mm]
>  >  
> > [mm]\gdw t^2+at=-b[/mm]
>  >  
> >
> > [mm]\gdw (t+\bruch{a}{2})^2=\bruch{a^2}{4}-b[/mm]
>  >  
> > [mm]\gdw (t+\bruch{a}{2})^2=\bruch{a^2-4b}{4}[/mm]
>  >  
> > [mm]\gdw t+\bruch{a}{2}=\pm \wurzel{\bruch{a^2-4b}{4}}[/mm] Was nur
> > geht, wenn [mm]\bruch{a^2-4b}{4}\ge0[/mm] ist.
>  >  
> > [mm]\gdw t+\bruch{a}{2}=\pm \wurzel{\bruch{a^2-4b}{4}}[/mm]
>  >  
> >
> > [mm]\gdw[/mm] t = [mm]\pm \wurzel{\bruch{a^2-4b}{4}}-\bruch{a}{2}[/mm]
>  >  
> richtig
>  > Dann ist f(a,b):= min [mm]\{ \bruch{\wurzel{a^2-4b}-2a}{2} , -\bruch{\wurzel{a^2-4b}-2a}{2} \}[/mm]

>  
> hier hast du einen Fehler, das 2 te  -a muss +2a sein.
> kannst du das min nicht bestimmen?
>  > > Beispiel: f(0,-1)=-1

>  >  
> > Das würde dann auch passen.
>  >  
> > > In a) ist U so zu bestimmen, dass für (a,b) [mm]\in[/mm] U die Gl.
> > > [mm]t^2+at+b[/mm] reelle Lösungen hat, dass U offen ist und dass U
> > > "möglichst " groß ist.
>  >  
> > Okay, also muss  
> >
> > [mm]a^2-4b\ge[/mm] 0
> >
> > [mm]\gdw a^2\ge[/mm] 4b
>  >  
> > Dass gilt schonmal für alle (a,b) [mm]\in [4,\infty)[/mm]
>  
> das und das folgende ist sinnlos, U ist kein Intervall
> sondern eine 2 dimensionale Menge, also aus [mm]\IR^2,[/mm] das
> kannst du nicht als Intervall angeben, entweder einfach
> durch die Ungleichung oder geometrisch , als Gebiet im [mm]R^2[/mm]
> das ausserhalb der Parabel  [mm]b=a^2/4[/mm] liegt.
>  
> Gruss leduart


Hey vielen dank an alle für die Hilfe.
Ich habs nun hinbekommen. :)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de