www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Funktion untersuchen
Funktion untersuchen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 28.01.2007
Autor: Tijaji

Aufgabe
Untersuchen sie die folgende Funktion [mm] \bruch{1}{x+1} [/mm]
auf  Beschränktheit, Monotonie, Stetigkeit, Supremum von f, Maximum von f, Infimum von f und Minimum von f

also die Funktion ist Monoton wachsend da muss ich nachweisen [mm] x_1
Also [mm] \bruch{1}{x_1 +1} \le \bruch{1}{x_2 +1} [/mm]
[mm] x_2^2 [/mm] +x [mm] \le x_1^2 [/mm] +x
[mm] (x_2 [/mm] + [mm] 0,5)^2 [/mm] -0,25 [mm] \le (x_1 +0,5)^2 [/mm] -0,25
[mm] x_2 [/mm] +0,5 [mm] \le x_1 [/mm] +0,5
[mm] x_2 \le x_1 [/mm]
das ist irgendwie falsch
aber ich weis nicht wo der fehler liegt
beschränktheit ist klar aber da bekomme ich nur die obere grenze nachgewiesen die untere nicht



        
Bezug
Funktion untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 So 28.01.2007
Autor: angela.h.b.


> Untersuchen sie die folgende Funktion [mm]\bruch{1}{x+1}[/mm]
>  auf  Beschränktheit, Monotonie, Stetigkeit, Supremum von
> f, Maximum von f, Infimum von f und Minimum von f


Hallo,

bevor Du überhaupt irgendetwas tust, mußt du den Definitionsbereich angeben, denn diese Funktion hat ja zwei Äste,
welche Du für Monotonieüberlegungen getrennt untersuchen mußt, falls sich der Definitionsbereich über beide erstreckt.

Mit einer Skizze erspart man sich viel Mühe und bekommt schonmal eine Idee davon, was man beweisen möchte.

>  also die Funktion ist Monoton wachsend

Wie kommst Du denn darauf?
Gehen wir in den positiven Bereich.

es ist 1<27, aber ist auch [mm] \bruch{1}{1+1}<\bruch{1}{1+27}? [/mm]

Deine Rechnung kann ich leider nicht nachvollziehen.

Du mußt (für monoton fallend)
mit [mm] x_1 und nach passenden Umformungen mit

[mm] \bruch{1}{1+x_2}<\bruch{1}{1+x_1} [/mm] enden.

Betrachte es getrennt für [mm] x_1, x_2>-1 [/mm] und [mm] x_1,x_2>-1. [/mm]

>  beschränktheit ist klar aber da bekomme ich nur die obere
> grenze nachgewiesen die untere nicht.

Wie gesagt, mach eine Skizze.

Gruß v. Angela


Bezug
                
Bezug
Funktion untersuchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 So 28.01.2007
Autor: Tijaji

ich hab vergessen das x [mm] \le [/mm] 0 sein soll und dann ist sie aufjedenfall wachsend

Bezug
                        
Bezug
Funktion untersuchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 So 28.01.2007
Autor: angela.h.b.


> ich hab vergessen das x [mm]\le[/mm] 0 sein soll und dann ist sie
> aufjedenfall wachsend  

x [mm] \le [/mm] 0 ???

Was machst du mit x=-1?

Und ich wiederhole meine Frage: hast du eine Skizze angefertigt?
probehalber ein paar Werte ausgerechnet, völlig ohne Beweiskraft, nur um Dir selbst zu helfen?

Gruß v. Angela



Bezug
                                
Bezug
Funktion untersuchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 So 28.01.2007
Autor: Tijaji

sorry ich bin neben der spur ich mein genau das andere x [mm] \ge [/mm] 0
und ne skizze habe ich

Bezug
                                        
Bezug
Funktion untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 So 28.01.2007
Autor: angela.h.b.


> sorry ich bin neben der spur ich mein genau das andere x
> [mm]\ge[/mm] 0
>  und ne skizze habe ich  

Gut.
Dann stell jetzt fest, ob Du lieber beweisen möchtest, ob sie fällt oder steigt für x [mm] \le [/mm] 0.

Und als nächstes schau nach, wodurch sie beschränkt ist.
Es beweist sich dann leichter.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de