www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Funktionaler Zusammenhang
Funktionaler Zusammenhang < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionaler Zusammenhang: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:49 Di 30.06.2009
Autor: el.titeritero

Ich bitte zunächst um Rücksichtnahme, da ich kein Mathematiker bin.

Es stellt sich mir folgendes Problem:

Gegeben seien zwei diskrete Zufallsvariablen x und y mit Erwartungswerten [mm] \mu_{x}, [/mm] bzw. [mm] \mu_{y} [/mm] und Standardabweichungen [mm] s_{x}, [/mm] bzw. [mm] s_{y}. [/mm]  

Des Weiteren seien zwei Funktionen f und g gegeben, wobei f direkt von x bzw. y abhängt und g vom Erwartungswert und von der Standardabweichung der Zufallsvariablen.

Es gelte außerdem

f´(x) > 0, bzw. f´(y) > 0 und f´´(x) < 0, bzw. f´´(y) < 0 (z.B. f(x) = [mm] \wurzel{x}) [/mm]

und

[mm] \bruch{\partial g}{\partial \mu} [/mm] > 0 und [mm] \bruch{\partial g}{\partial s} [/mm] < 0 (z.B. [mm] g(\mu,s) [/mm] = [mm] \mu [/mm] - s).

Nun möchte ich wissen, für welche funktionalen Zusammenhänge von f und g gilt:

E[f(x)] > E[f(y)] [mm] \gdw g(\mu_{x},s_{x}) [/mm] > [mm] g(\mu_{y},s_{y}) [/mm]

Ich habe mir schon einige Gedanken gemacht, aber komme im Augenblick noch auf keinen grünen Zweig, wie man dieses Problem angehen könnte.
Ich bin für alle Hinweise dankbar.

Gruß.

        
Bezug
Funktionaler Zusammenhang: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 15.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Funktionaler Zusammenhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Mi 15.07.2009
Autor: Al-Chwarizmi


> Ich bitte zunächst um Rücksichtnahme, da ich kein
> Mathematiker bin.
>  
> Es stellt sich mir folgendes Problem:
>  
> Gegeben seien zwei diskrete Zufallsvariablen x und y mit
> Erwartungswerten [mm]\mu_{x},[/mm] bzw. [mm]\mu_{y}[/mm] und
> Standardabweichungen [mm]s_{x},[/mm] bzw. [mm]s_{y}.[/mm]  
>
> Des Weiteren seien zwei Funktionen f und g gegeben, wobei f
> direkt von x bzw. y abhängt und g vom Erwartungswert und
> von der Standardabweichung der Zufallsvariablen.
>  
> Es gelte außerdem
>
> f´(x) > 0, bzw. f´(y) > 0 und f´´(x) < 0, bzw. f´´(y)
> < 0 (z.B. f(x) = [mm]\wurzel{x})[/mm]
>  
> und
>  
> [mm]\bruch{\partial g}{\partial \mu}[/mm] > 0 und [mm]\bruch{\partial g}{\partial s}[/mm]
> < 0 (z.B. [mm]g(\mu,s)[/mm] = [mm]\mu[/mm] - s).
>  
> Nun möchte ich wissen, für welche funktionalen
> Zusammenhänge von f und g gilt:
>  
> E[f(x)] > E[f(y)] [mm]\gdw g(\mu_{x},s_{x})[/mm] > [mm]g(\mu_{y},s_{y})[/mm]
>  
> Ich habe mir schon einige Gedanken gemacht, aber komme im
> Augenblick noch auf keinen grünen Zweig, wie man dieses
> Problem angehen könnte.
>  Ich bin für alle Hinweise dankbar.
>  
> Gruß.


Hallo  el.titeritero,

ich habe diese Frage erst jetzt entdeckt, wo ihr
Fälligkeitsdatum abgelaufen ist. Wahrscheinlich
hast du keine Antwort erhalten:

1.) weil die Fragestellung sehr speziell ist im
    Sinne von ungewöhnlich, selten

2.) weil die Fragestellung sehr allgemein ist:
    du suchst nicht bloss einzelne Funktionen,
    sondern ganze Funktionenklassen

3.) weil sie auch für Leute mit Erfahrung in
    Stochastik schwierig sein dürfte - wenn sie
    überhaupt lösbar ist

Vielleicht verrätst du uns ja doch noch, in
welchem Zusammenhang du auf diese
eigenartig erscheinende Frage gekommen
bist ?

LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de