www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Funktionen
Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Sa 03.05.2008
Autor: gerli

Aufgabe
Bestimmen Sie die kleinste Periode der Funktion g(x) = "Wurzel" aus sin² x+1.  

Kann mir jemand bei dieser Funktion weiterhelfen? Sin²= pi und für mich ist also die kleinste Periode pi. Kann mir jemand den Rechenschritt erklären. werden.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Sa 03.05.2008
Autor: Al-Chwarizmi


> Bestimmen Sie die kleinste Periode der Funktion g(x) =
> "Wurzel" aus sin² x+1.                     <--- Formel nicht ganz klar...   Klammern?
> Kann mir jemand bei dieser Funktion weiterhelfen? Sin²= pi
> und für mich ist also die kleinste Periode pi. Kann mir                [ok]
> jemand den Rechenschritt erklären. werden.


Hallo gerli,

x-> x+1 ist nur eine Verschiebung in  x-Richtung, ändert also eine Periode nicht.
[mm] f(x)=sin^2(x) [/mm]  hat die Periode [mm] \pi [/mm] , wie man sich leicht überzeugen kann, z.B.
wegen [mm] sin^2(x) [/mm] = [mm] \bruch{1-cos (2x)}{2} [/mm]

g(x) = [mm] \wurzel{sin^2(x+1)} [/mm] hat also wirklich die (kleinste) Periodenlänge [mm] \pi [/mm]

Diese Funktion könnte man aber einfacher schreiben:  g(x) = |sin(x+1)|.
Stellt man dies grafisch dar, ist die Periode [mm] \pi [/mm] auch ganz leicht ersichtlich.

Gruß     al-Ch.


übrigens: Formeln wie die obigen zu schreiben ist ganz leicht mit den Eingabehilfen,
die unter dem Eingabefenster angegeben sind.

Bezug
                
Bezug
Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 So 04.05.2008
Autor: gerli

Aufgabe
Bestimmen Sie die kleinste Periode der Funktion [mm] g(x)=\wurzel{sin²x+1} [/mm]


Ich muß es testen bzw. zeigen das f(x+pi) = f(x)ist , für alle x. Dazu soll ich x+pi in die Funktion einsetzen und den Sinus ausnützen. Kannst du mir das in einem Rechenschritt erklären? Mir ist klar das Sin²x = pi ist.

Gruß Christian

Bezug
                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 So 04.05.2008
Autor: angela.h.b.


> Bestimmen Sie die kleinste Periode der Funktion
> [mm]g(x)=\wurzel{sin²x+1}[/mm]
>  
>
> Ich muß es testen bzw. zeigen das f(x+pi) = f(x)ist , für
> alle x. Dazu soll ich x+pi in die Funktion einsetzen und
> den Sinus ausnützen. Kannst du mir das in einem
> Rechenschritt erklären? Mir ist klar das Sin²x = pi ist.

Hallo,

[willkommenmr].

Daß Dir klar ist, daß sin²x = [mm] \pi, [/mm] beunruhigt mich sehr. Das ist nämlich riesengroßer Blödsinn...

Guck' Dir doch mal die Funktion sin^2x geplottet an. Ist die konstant? Nein.

Du mußt, wenn Du [mm] f(x+\pi) [/mm] = f(x) testen willst, [mm] f(x+\pi) [/mm] berechnen, dh. überall das x durch [mm] x+\pi [/mm] ersetzen.

Also hier:

[mm] g(x+\pi)=\wurzel{sin²(x+\pi)+1}=\wurzel{[sin(x+\pi)]^2+1}=... [/mm]


Hierfür mußt Du nun ein bißchen etwas über die Sinusfunktion wissen. Was ist [mm] sin(x+\pi)? [/mm]

Spätestens, wenn Du Dir den Sinus mal skizzierst, solltest Du es herausbekommen.

Gruß v. Angela






Bezug
                                
Bezug
Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 04.05.2008
Autor: gerli

[a]Datei-Anhang

Ich habe jetzt den Sin(x+Pi ) skizziert. Stimmt meine Darstellung so?

Gruß

Christian

Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
Bezug
                                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 So 04.05.2008
Autor: angela.h.b.


> [a]Datei-Anhang
>  
> Ich habe jetzt den Sin(x+Pi ) skizziert. Stimmt meine
> Darstellung so?

Hallo,

durch deine Skizze blicke ich nicht durch, weil Du auf der waagerechten Achse zweierlei Maßstäbe zu verwenden scheinst.

Eine Sinuskurve kann man sich []hier betrachten, [mm] sin(x+\pi) [/mm] ist demgegenüber um [mm] \pi [/mm] nach links verschoben.
Der Graph dieser Funktion hat also ein Minimum bei [mm] \pi/2, [/mm]

und Du kannst feststellen, daß [mm] sin(x+\pi)=-sin(x) [/mm] ist. (Dies kannst Du für Deine Aufgabe gebrauchen.)

Überzeuge Dich davon, daß sin(x) und [mm] sin(x+\pi) [/mm] beide die Periode [mm] 2\pi [/mm] haben.

Gruß v. Angela

Bezug
                                                
Bezug
Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 So 04.05.2008
Autor: gerli

Hallo Angela!

Danke für Deine Hilfe. Wünsche Dir noch eine schönen Abend.

Gruß

Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de