www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Funktionen - Algebren
Funktionen - Algebren < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen - Algebren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:47 Mi 19.05.2010
Autor: Irina09

Aufgabe
Sind folgende Mengen von Funktionen Algebren?

1.) {f: {1,2} [mm] \to \IC [/mm] }
2.) {f: [mm] \IR \to \IR [/mm] | f(x) [mm] \ge [/mm] 0 }
3.) {f: [mm] \IR \to \IC [/mm] | f differenzierbar auf [mm] \IR [/mm] }
4.) [mm] C(\IR) [/mm] (Menge aller komplexwertigen, stetigen, beschränkten Funktionen mit Definitionsbereich [mm] \IR) [/mm]
5.) { [mm] x^n [/mm] : [0,1] [mm] \to \IR [/mm] | n [mm] \in \IN [/mm] }

Hallo,

ich benötige bei obiger Aufgabenstellung leider Hilfe!
Ich weiß, dass eine Algebra A unter Addition, Multiplikation und Multiplikation mit Skalaren abgeschlossen sein muss.

Meine bisherigen Überlegungen:
2.) ist keine Algebra, da man eine Funktion der Menge mit einem negativen Skalar multiplizieren kann. Diese neue Funktion gehört dann nicht mehr zur ursprünglichen Menge.
3.) ist eine Algebra, da die Summe bzw. das Produkt von differenzierbaren Funktionen wieder differenzierbar ist und man eine differenzierbare Funktion mit einem Skalar multiplizieren kann und diese neue Funktion ebenfalls differenzierbar ist.
4.) ist eine Algebra, da man mit stetige und beschränkte Funktion ebenfalls diese Operationen durchführen kann und diese dann ihre Eigenschaften behalten.

Ist dies korrekt? Bei 1.) und 5.) bräuchte ich dann noch Hilfe (entweder Gegenbeispiele oder Begründungen für die Richtigkeit).

Vielen Dank Euch allen!

Liebe Grüße
Irina

        
Bezug
Funktionen - Algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Mi 19.05.2010
Autor: Gonozal_IX

Hiho,

zu 1.) egal was du tust, du landest immer noch in von {1,2} in [mm] \IC [/mm] (und das ist ja die Aussage der Menge).

zu 5.) Überleg dir das mal bei Multiplikation mit einem Skalar:

Du hast [mm] x^n [/mm] und multiplizierst das nun mit 5 bspw. => [mm] 5x^n [/mm] gibt es nun ein [mm] m\in \IN, [/mm] so dass du [mm] 5x^n [/mm] als [mm] x^m [/mm] schreiben kannst?

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de