www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Funktionen analytisch?
Funktionen analytisch? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen analytisch?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 02.12.2014
Autor: helicopter

Aufgabe
Welche der folgenden Funktionen sind analytisch, welche nicht?
[mm] f_{1}: \IC\to\IC: z\mapsto i+(2+i)z-3z^{2}+(4-i)z^{3} [/mm]
[mm] f_{2}: \IC\to\IC: z\mapsto (f_{1}(z))^{\*} [/mm]
[mm] f_{3}: \IC\to\IC: z\mapsto (f_{1}(z^{\*}))^{\*} [/mm]
[mm] f_{4}: \IC\to\IC: z\mapsto f_{1}(z^{\*}) [/mm]

Hallo,

Könnte mir bitte jemand sagen ob es so in Ordnung ist was ich gemacht habe?

Ich habe:
[mm] f_{1} [/mm] ist analytisch, denn Produkte und Summen analytischer Funktionen sind wieder analytisch. Das f(z)=z und konstante Funktionen analytisch sind habe ich schnell gezeigt (partielle Ableitungen sind stetig und erfüllen die Cauchy-Riemann DGL)

[mm] f_{2} [/mm] ist nicht analytisch weil [mm] f(z)=z^{\*} [/mm] nicht die Cauchy-Riemann DGL erfüllt. [mm] f_{2}(z) [/mm] ist aber [mm] -i+(2-i)z^{\*}-3z^{\*^{2}}+(4+i)z^{\*^{3}} [/mm]

[mm] f_{3} [/mm] ist wieder analytisch, denn [mm] f_{3}(z)=(f_{1}(z^{\*}))^{\*}=(i+(2+i)z^{\*}-3z^{{\*}^{2}}+(4-i)z^{{\*}^{3}})^{\*}=-i+(2-i)z-3z^{2}+(4+i)z^{3} [/mm] und ist eine Summe aus analytischen Funktionen.

[mm] f_{4} [/mm] nicht analytisch da [mm] f_{4}(z)=f_{1}(z^{\*})=i+(2+i)z^{\*}-3z^{{\*}^{2}}+(4-i)z^{{\*}^{3}} [/mm] nicht analytische Funktionen enthält.


Danke im Voraus,

helicopter

        
Bezug
Funktionen analytisch?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Di 02.12.2014
Autor: fred97


> Welche der folgenden Funktionen sind analytisch, welche
> nicht?
>  [mm]f_{1}: \IC\to\IC: z\mapsto i+(2+i)z-3z^{2}+(4-i)z^{3}[/mm]
>  
> [mm]f_{2}: \IC\to\IC: z\mapsto (f_{1}(z))^{\*}[/mm]
>  [mm]f_{3}: \IC\to\IC: z\mapsto (f_{1}(z^{\*}))^{\*}[/mm]
>  
> [mm]f_{4}: \IC\to\IC: z\mapsto f_{1}(z^{\*})[/mm]
>  Hallo,
>  
> Könnte mir bitte jemand sagen ob es so in Ordnung ist was
> ich gemacht habe?
>  
> Ich habe:
>  [mm]f_{1}[/mm] ist analytisch, denn Produkte und Summen
> analytischer Funktionen sind wieder analytisch. Das f(z)=z
> und konstante Funktionen analytisch sind habe ich schnell
> gezeigt (partielle Ableitungen sind stetig und erfüllen
> die Cauchy-Riemann DGL)

Das ist O.K.


>  
> [mm]f_{2}[/mm] ist nicht analytisch weil [mm]f(z)=z^{\*}[/mm] nicht die
> Cauchy-Riemann DGL erfüllt. [mm]f_{2}(z)[/mm] ist aber
> [mm]-i+(2-i)z^{\*}-3z^{\*^{2}}+(4+i)z^{\*^{3}}[/mm]

[mm] f_2 [/mm] ist nicht analytisch, aber Deine Begründung gefällt mir nicht.

Z.B. ist   [mm] g(z)=z^{\*}-z^{\*} [/mm] analytisch

Finde also eine andere Begründung


>
> [mm]f_{3}[/mm] ist wieder analytisch, denn
> [mm]f_{3}(z)=(f_{1}(z^{\*}))^{\*}=(i+(2+i)z^{\*}-3z^{{\*}^{2}}+(4-i)z^{{\*}^{3}})^{\*}=-i+(2-i)z-3z^{2}+(4+i)z^{3}[/mm]
> und ist eine Summe aus analytischen Funktionen.

Das ist O.K.


>  
> [mm]f_{4}[/mm] nicht analytisch da
> [mm]f_{4}(z)=f_{1}(z^{\*})=i+(2+i)z^{\*}-3z^{{\*}^{2}}+(4-i)z^{{\*}^{3}}[/mm]
> nicht analytische Funktionen enthält.

Gleiche Kritik wie bei [mm] f_2 [/mm]

FRED

>  
>
> Danke im Voraus,
>  
> helicopter


Bezug
                
Bezug
Funktionen analytisch?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Di 02.12.2014
Autor: helicopter

Hallo,

> > [mm]f_{2}[/mm] ist nicht analytisch weil [mm]f(z)=z^{\*}[/mm] nicht die
> > Cauchy-Riemann DGL erfüllt. [mm]f_{2}(z)[/mm] ist aber
> > [mm]-i+(2-i)z^{\*}-3z^{\*^{2}}+(4+i)z^{\*^{3}}[/mm]
>
> [mm]f_2[/mm] ist nicht analytisch, aber Deine Begründung gefällt
> mir nicht.
>
> Z.B. ist   [mm]g(z)=z^{\*}-z^{\*}[/mm] analytisch

Das aber auch nur weil g(z) dann 0 wäre und damit analytisch oder gibt es auch andere Möglichkeiten das eine Summe aus nichtanalytischen Funktionen analytisch wird?

> Finde also eine andere Begründung
>  

EDIT: Ich weiß ja das [mm] f(z)=z^{\*} [/mm] nicht analytisch also auch nicht komplex differenzierbar ist. Dann ist aber auch [mm] z^{\*^{2}} [/mm] und  [mm] z^{\*^{3}} [/mm] nicht komplex differenzierbar. Da die Summe der Funktionen von 0 verschieden ist kann auch für diese Summe keine komplexe Ableitung geben und sie ist somit nicht analytisch.

Kann man das so argumentieren?


Gruß helicopter


Bezug
                        
Bezug
Funktionen analytisch?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Mi 03.12.2014
Autor: fred97


> Hallo,
>
> > > [mm]f_{2}[/mm] ist nicht analytisch weil [mm]f(z)=z^{\*}[/mm] nicht die
> > > Cauchy-Riemann DGL erfüllt. [mm]f_{2}(z)[/mm] ist aber
> > > [mm]-i+(2-i)z^{\*}-3z^{\*^{2}}+(4+i)z^{\*^{3}}[/mm]
> >
> > [mm]f_2[/mm] ist nicht analytisch, aber Deine Begründung gefällt
> > mir nicht.
> >
> > Z.B. ist   [mm]g(z)=z^{\*}-z^{\*}[/mm] analytisch
>  
> Das aber auch nur weil g(z) dann 0 wäre und damit
> analytisch oder gibt es auch andere Möglichkeiten das eine
> Summe aus nichtanalytischen Funktionen analytisch wird?
>  
> > Finde also eine andere Begründung
>  >  
>
> EDIT: Ich weiß ja das [mm]f(z)=z^{\*}[/mm] nicht analytisch also
> auch nicht komplex differenzierbar ist. Dann ist aber auch
> [mm]z^{\*^{2}}[/mm] und  [mm]z^{\*^{3}}[/mm] nicht komplex differenzierbar.
> Da die Summe der Funktionen von 0 verschieden ist kann auch
> für diese Summe keine komplexe Ableitung geben und sie ist
> somit nicht analytisch.
>  
> Kann man das so argumentieren?

Das ist "wackelig".

Warum bemühst Du nicht die Cauchy-Riemannschen DGLen ? O.K., das ist mühsame Rechnerei, aber Du bist auf der sicheren Seite.

FRED

>  
>
> Gruß helicopter
>  


Bezug
                                
Bezug
Funktionen analytisch?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Mi 03.12.2014
Autor: helicopter

Hallo,

> Warum bemühst Du nicht die Cauchy-Riemannschen DGLen ?
> O.K., das ist mühsame Rechnerei, aber Du bist auf der
> sicheren Seite.
>  
> FRED

Da habe ich garnicht dran gedacht, aber gut fürs nächste Mal weiß ich Bescheid. Danke


Gruß helicopter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de