www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Funktionen mit Parametern
Funktionen mit Parametern < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen mit Parametern: tipp idee
Status: (Frage) beantwortet Status 
Datum: 21:07 Mo 07.12.2009
Autor: vlue

Aufgabe
Gegeben ist die Funktionsschar fa(x)= -x³/3a² + (a-2)x-2; [mm] a\in\IR+; [/mm] die Graphen der Funktionsschar werden it Gfa bezeichnet:

1. Bestimmen Sie die Werte von a, bei denen Gfa

*zwei verschiedene Punkte
*genau einen Punkt
*keinen Punkt
mit waagrechter Tangente besitzt

2. Zeigen sie dass die Koordinaten des WEP von Gfa unabhängig von a sind

3. Für welchen wert von a liegt ein TEP vor?

4. Berechnen sie a so, dass die wendetangente von fa die steigung 1 hat

      

Ich bräuchte hilfe ich bring nur ansätze zu stande könnte mir einer die aufgabe vorrechnen damit ich die reihenfolge der schritte verstehe

muss ich die erste oder zweite ableitung benützen und
die größten probleme hab ich mit der aufgabe 3.

danke für die hilfe im vorraus

        
Bezug
Funktionen mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mo 07.12.2009
Autor: MathePower

Hallo vlue,

> Gegeben ist die Funktionsschar fa(x)= -x³/3a² + (a-2)x-2;
> [mm]a\in\IR+;[/mm] die Graphen der Funktionsschar werden it Gfa
> bezeichnet:
>  
> 1. Bestimmen Sie die Werte von a, bei denen Gfa
>  
> *zwei verschiedene Punkte
>  *genau einen Punkt
>  *keinen Punkt
> mit waagrechter Tangente besitzt
>  
> 2. Zeigen sie dass die Koordinaten des WEP von Gfa
> unabhängig von a sind
>  
> 3. Für welchen wert von a liegt ein TEP vor?
>  
> 4. Berechnen sie a so, dass die wendetangente von fa die
> steigung 1 hat
>  
>
> Ich bräuchte hilfe ich bring nur ansätze zu stande
> könnte mir einer die aufgabe vorrechnen damit ich die
> reihenfolge der schritte verstehe


Das machen wir andersrum:

Poste Du Deine bisherigen Rechenschritte, dann können
wir sehen an welchen Stellen es klemmt.


>
> muss ich die erste oder zweite ableitung benützen und
> die größten probleme hab ich mit der aufgabe 3.
>
> danke für die hilfe im vorraus



Gruss
MathePower

Bezug
                
Bezug
Funktionen mit Parametern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 07.12.2009
Autor: vlue

f'a(x)= -3x²/3a² + a-2 = -x²/a² + a-2 =

x²/a² =a-2
x²=a²(a-2)
x=+-wurzel/(2-a)

eine lösung
a²(a-2)=o                  a=2 v (a=O)

zwei lösungen
a²(a-2)>0,        da a²>0 = a²(a-2)>O
                         wenn a-2>0 = a>2

keine lösung
a²(o-2)<0 also wenn a-2<0
= a<2 = a<a<2


2. aufgabe

f''a(x)= -2x/a²=o
             -2x=o
              x= O

fa(0) = -2             WEP (o/-2)


hab aber leider keine idee für die c habs mit mitternachtsformel der ersten ableitung versucht aber das wird falsch sein

Bezug
                        
Bezug
Funktionen mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mo 07.12.2009
Autor: mb588

huhu.
Also erstmal würd ich sagen benutz du am besten das Formelsystem.

Es sieht ganz richtig aus...also a) und b).
Bei a) ist aber glaub ich noch etwas ziehmlich durcheiander.
Mein Tipp:
1)Schreib dir erst alle benötigeten Ableitungen auf
[mm] f_{a}(x)=-\bruch{x^{3}}{3a^{2}}-(a-2)x-2 [/mm]
[mm] f_{a}'(x)=-\bruch{x^{2}}{a^{2}}+a-2 [/mm]
[mm] f_{a}''(x)=-\bruch{2x}{a^{2}} [/mm]

2)Setze die erste Ableitung gleich Null
[mm] f_{a}'(x)=-\bruch{x^{2}}{a^{2}}+a-2=0 [/mm]
=> [mm] x=\pm\sqrt{-a^{2}(2-a)} [/mm]

3) Jetzt überlegst du dir für welche a das gleich Null wird, also für welche a es eine Lösung gibt. Das hast du auch richtig gemacht: [mm] a_{1}=0 [/mm] und [mm] a_{2}=2. [/mm] Die Lösungen wären hier, wenn du [mm] a_{1/2} [/mm] einsetzt [mm] x=\pm [/mm] 0=0

Zwei Lösungen entstehen ja genau dann, wenn unter der Wurzel eine Zahl größer Null steht. Das lässt sich hier leicht durch überlegen machen:
[mm] -a^{2} [/mm] ist auf jedenfall negativ für alle a>0. D.h. [mm] -a^{2}(2-a) [/mm] wird dann positiv, wenn 2-a<0 also a>2. Also für alle a>2 gibt es zwei Lösungen.

Keine Lösung in [mm] \IR [/mm] hast du, wenn unter der Wurzel eine negative Zahl steht. Wie gesagt [mm] -a^{2} [/mm] ist auf jedenfall negativ. D.h. a-2 muss positiv sein. Also 2-a>0. Daraus folgt a<2. Jetzt musst du aber beachten, dass a=0 ja eine Lösung liefert und denn schreibst du entweder für a<2 mit [mm] a\not= [/mm] 0 gibt es keine Lösung oder du gibst zwei Intervalle an: 0<a<2 und a<0.

Aber Achtung!!! Da [mm] a\in\IR_{>0} [/mm] entfallen also alle a<0.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de