www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionen mit beliebigen Base
Funktionen mit beliebigen Base < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen mit beliebigen Base: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 23.01.2012
Autor: fevrier

Aufgabe
Lösen Sie die Gleichung!

a) 2^(x-2) = -2
b) [mm] 2^{x-1}-3^x [/mm] = 0

Also bei a) würde ich erst einmal Logarithmieren, um den Exponenten "runter zu kriegen":
ln(2^(x-2) = ln(-2)

dann weiß ich allerdings nicht weiter.

Bin über Tipps sehr dankbar!

        
Bezug
Funktionen mit beliebigen Base: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 23.01.2012
Autor: Marcel

Hallo,

> Lösen Sie die Gleichung!
>  
> a) 2^(x-2) = -2
>  b) [mm]2^{x-1}-3^x[/mm] = 0
>  Also bei a) würde ich erst einmal Logarithmieren, um den
> Exponenten "runter zu kriegen":
>   ln(2^(x-2) = ln(-2)
>  
> dann weiß ich allerdings nicht weiter.

was soll denn [mm] $\ln(-2)$ [/mm] sein? Bleiben wir doch mal beim reellen Logarithmus, also wir kennen sowas wie [mm] $\ln(x)\,$ [/mm] für [mm] $\red{x > 0}$: [/mm]

Was Du schreiben kannst, ist
[mm] $$2^{x-2}=-2$$ [/mm]
[mm] $$\gdw (e^{\ln(2)})^{x-2}=e^{(x-2)*\ln(2)}=-2\,.$$ [/mm]

Nun ist doch bekanntlich [mm] $e^s [/mm] > 0$ für alle $s [mm] \in \IR\,.$ [/mm] Kann dann die letzte Gleichung noch eine Lösung für $x [mm] \in \IR$ [/mm] haben?

(Alternativ: Ist Dir klar, dass [mm] $2^r [/mm] > 0$ für alle $r [mm] \in \IR$ [/mm] gilt? Und was bedeutet das dann oben?)

Zu b)
Die Gleichung kann man umschreiben zu
[mm] $$2^{x-1}=3^x\,,$$ [/mm]
und nun wende mal [mm] $\ln(.)$ [/mm] auf beide Seiten der Gleichung an (das ist dann äquivalent) und benutze die allseits bekannte Regel (kurz notiert):
[mm] $$\ln(a^b)=b*\ln(a)\,.$$ [/mm]
Dann erhältst Du eine Gleichung in [mm] $x\,,$ [/mm] die Du nach [mm] $x\,$ [/mm] auflösen kannst!

Gruß,
Marcel

Bezug
                
Bezug
Funktionen mit beliebigen Base: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mo 23.01.2012
Autor: fevrier


> Hallo,
>  
> > Lösen Sie die Gleichung!
>  >  
> > a) 2^(x-2) = -2
>  >  b) [mm]2^{x-1}-3^x[/mm] = 0
>  >  Also bei a) würde ich erst einmal Logarithmieren, um
> den
> > Exponenten "runter zu kriegen":
>  >   ln(2^(x-2) = ln(-2)
>  >  
> > dann weiß ich allerdings nicht weiter.
>  
> was soll denn [mm]\ln(-2)[/mm] sein? Bleiben wir doch mal beim
> reellen Logarithmus, also wir kennen sowas wie [mm]\ln(x)\,[/mm]
> für [mm]\red{x > 0}[/mm]:
>  
> Was Du schreiben kannst, ist
>  [mm]2^{x-2}=-2[/mm]
>  [mm]\gdw (e^{\ln(2)})^{x-2}=e^{(x-2)*\ln(2)}=-2\,.[/mm]

Also muss ich immer versuchen, aus so einer Funktion eine e-Funktion zu machen? oder wie ist das zu verstehen? Irgendwie ist mir der Unterschied zwischen "ln" und "e" noch nicht so ganz klar, wann ich was davon nehmen muss..

>  
> Nun ist doch bekanntlich [mm]e^s > 0[/mm] für alle [mm]s \in \IR\,.[/mm]
> Kann dann die letzte Gleichung noch eine Lösung für [mm]x \in \IR[/mm]
> haben?
>  
> (Alternativ: Ist Dir klar, dass [mm]2^r > 0[/mm] für alle [mm]r \in \IR[/mm]
> gilt? Und was bedeutet das dann oben?)
>  
> Zu b)
>  Die Gleichung kann man umschreiben zu
>  [mm]2^{x-1}=3^x\,,[/mm]
>  und nun wende mal [mm]\ln(.)[/mm] auf beide Seiten der Gleichung an
> (das ist dann äquivalent) und benutze die allseits
> bekannte Regel (kurz notiert):
>  [mm]\ln(a^b)=b*\ln(a)\,.[/mm]
>  Dann erhältst Du eine Gleichung in [mm]x\,,[/mm] die Du nach [mm]x\,[/mm]
> auflösen kannst!

da würde ich dann wieder das e nehmen:
e^((x-1)*ln2) = e^(xln3)

>  
> Gruß,
>  Marcel


Bezug
                        
Bezug
Funktionen mit beliebigen Base: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mo 23.01.2012
Autor: Marcel

Hallo,

> > Hallo,
>  >  
> > > Lösen Sie die Gleichung!
>  >  >  
> > > a) 2^(x-2) = -2
>  >  >  b) [mm]2^{x-1}-3^x[/mm] = 0
>  >  >  Also bei a) würde ich erst einmal Logarithmieren,
> um
> > den
> > > Exponenten "runter zu kriegen":
>  >  >   ln(2^(x-2) = ln(-2)
>  >  >  
> > > dann weiß ich allerdings nicht weiter.
>  >  
> > was soll denn [mm]\ln(-2)[/mm] sein? Bleiben wir doch mal beim
> > reellen Logarithmus, also wir kennen sowas wie [mm]\ln(x)\,[/mm]
> > für [mm]\red{x > 0}[/mm]:
>  >  
> > Was Du schreiben kannst, ist
>  >  [mm]2^{x-2}=-2[/mm]
>  >  [mm]\gdw (e^{\ln(2)})^{x-2}=e^{(x-2)*\ln(2)}=-2\,.[/mm]
>  
> Also muss ich immer versuchen, aus so einer Funktion eine
> e-Funktion zu machen?

immer? In der Mathematik gibt's selten ein immer. Es ist halt gut, wenn Du das ganze in eine Form bringst, wo Du "bekanntes erkennst".

> oder wie ist das zu verstehen?

Du lernst viele Rechenregeln, und wenn Dir nicht klar ist, was Du wann anwenden kannst bzw. wann es was bringt, musst Du halt einfach mal ein wenig versuchen, ob's was bringt. Auch hier lernt man viel aus Erfahrung. Du hattest erstmal die Erfahrung gemacht: "Logarithmieren kann nicht gut gehen, weil rechterhand eine Zahl [mm] $\le 0\,$ [/mm] steht, davon kenne ich keinen Logarithmus".

> Irgendwie ist mir der Unterschied zwischen "ln" und "e"
> noch nicht so ganz klar, wann ich was davon nehmen muss..

Es geht um die Argumentation hier. Es wäre schon eine Idee gewesen, den Logarithmus zu benutzen, aber dafür muss das, worauf man ihn anwenden will, auch $> [mm] 0\,$ [/mm] sein.
  

> > Nun ist doch bekanntlich [mm]e^s > 0[/mm] für alle [mm]s \in \IR\,.[/mm]
> > Kann dann die letzte Gleichung noch eine Lösung für [mm]x \in \IR[/mm]
> > haben?
>  >  
> > (Alternativ: Ist Dir klar, dass [mm]2^r > 0[/mm] für alle [mm]r \in \IR[/mm]
> > gilt? Und was bedeutet das dann oben?)

Du hast mir immer noch nicht gesagt, was Du nun hier für eine Lösung hast?

> > Zu b)
>  >  Die Gleichung kann man umschreiben zu
>  >  [mm]2^{x-1}=3^x\,,[/mm]
>  >  und nun wende mal [mm]\ln(.)[/mm] auf beide Seiten der Gleichung
> an
> > (das ist dann äquivalent) und benutze die allseits
> > bekannte Regel (kurz notiert):
>  >  [mm]\ln(a^b)=b*\ln(a)\,.[/mm]
>  >  Dann erhältst Du eine Gleichung in [mm]x\,,[/mm] die Du nach
> [mm]x\,[/mm]
> > auflösen kannst!
>  
> da würde ich dann wieder das e nehmen:
>  e^((x-1)*ln2) = e^(xln3)

Das macht doch keinen Sinn: Für $x > [mm] 0\,$ [/mm] haben wir doch [mm] $\exp(\ln(x))=x\,.$ [/mm] Dann gehst Du wieder dahin zurück, wo Du gestartet bist.

Also:
Nach [mm] $\ln$-Anwendung [/mm] hast Du
[mm] $$(x-1)*\ln(2)=x*\ln(3)\,.$$ [/mm]

Das ist doch eine tolle Gleichung, Dich stört (wie viele, warum auch immer) hier, dass da bei gewissen Zahlen ein [mm] $\ln$ [/mm] "dransteht".

Frage:
Wie würde man die Gleichung
[mm] $$(x-1)*\sqrt{2}=x*\sqrt{3}$$ [/mm]
lösen? Na doch wohl so
[mm] $$(x-1)*\sqrt{2}=x*\sqrt{3}$$ [/mm]
[mm] $$\gdw x*\sqrt{2}-\sqrt{2}=x*\sqrt{3}$$ [/mm]
[mm] $$\gdw x*(\sqrt{2}-\sqrt{3})=\sqrt{2}$$ [/mm]
[mm] $$\gdw x=\frac{\sqrt{2}}{\sqrt{2}-\sqrt{3}}\,.$$ [/mm]

Das ist eine tolle analoge Gleichung inklusive "Rechnung hin zur Lösung" zu Deiner obigen [mm] "$\ln$-Gleichung" [/mm] - verstehst Du die Vorgehensweise? Und wie kann man wohl nun Deine obige [mm] "$\ln$-Gleichung" [/mm] behandeln?

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de