www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Funktionen mit versch. Periode
Funktionen mit versch. Periode < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen mit versch. Periode: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 23.08.2011
Autor: AT-Colt

Hallo Leute,

wie es scheint, bin ich etwas aus der Übung, was Fourier-Transformationen betrifft. Jedenfalls habe ich hier ein paar Zeilen, die einfach nicht zusammenpassen wollen.

Gegeben seien eine Funktion [mm]f:\Omega\subset\mathbb{R}^{3}\rightarrow\mathbb{R}[/mm], bzw. deren periodische Fortsetzung, sowie eine Funktion [mm]g:\Omega[\varepsilon]\rightarrow\mathbb{R}[/mm], bzw. deren periodische Fortsetzung, wobei Omega ein Spat ist, der von den Vektoren [mm]\mathbf{a}[/mm], [mm]\mathbf{b}[/mm] und [mm]\mathbf{c}[/mm] aufgespannt wird und [mm]\Omega[\varepsilon][/mm] der Spat, der aus [mm]\Omega[/mm] entsteht, wenn man jedes Element von [mm]\Omega[/mm] mit der Matrix [mm](\mathbf{1}+\boldsymbol{\varepsilon})[/mm] multipliziert. Ich nehme [mm]\varepsilon[/mm] als klein und symmetrisch an, so dass die Inverse als [mm](\mathbf{1}-\boldsymbol{\varepsilon})[/mm] geschrieben werden kann.
Man beachte zunächst, dass die reziproken Vektoren im zweiten Fall gerade [mm](\mathbf{1}-\boldsymbol{\varepsilon})[/mm] mal den reziproken Vektoren des ersten Falls entsprechen.
Ich definiere: [mm]\mathbf{r}[\varepsilon] := (\mathbf{1}+\boldsymbol{\varepsilon})\mathbf{r}[/mm], [mm]\mathbf{G}[\varepsilon] := (\mathbf{1}-\boldsymbol{\varepsilon})\mathbf{G}[/mm]

Nun kann ich zunächst einmal zwei äquivalente Ausdrücke hinschreiben:

[mm]\int_{\Omega}f(\mathbf{r})g(\mathbf{r}[\varepsilon])\det(1+\varepsilon)d^{3}r \stackrel{\mathbf{r}_{\varepsilon}=\mathbf{r}[\varepsilon]}{=} \int_{\Omega[\varepsilon]}f((\mathbf{1}-\boldsymbol{\varepsilon})\mathbf{r}_{\varepsilon})g(\mathbf{r}_{\varepsilon})d^{3}r_{\varepsilon}[/mm]

Unter Berücksichtigung des Tranformationsverhaltens [mm]\widehat{f(\mathbf{A}\cdot)}(\mathbf{G}) = \frac{1}{\det(A)}\hat{f}(\mathbf{A}^{-1,T}\mathbf{G})[/mm] erhalte ich für die linke Seite, wenn ich in reziproke Vektoren von [mm]\Omega[/mm] transformiere:
[mm]\int_{\Omega}f(\mathbf{r})g(\mathbf{r}[\varepsilon])\det(1+\varepsilon)d^{3}r = \summe_{G,G'}\hat{f}(\mathbf{G})\frac{1}{\det(1+\varepsilon)}\hat{g}((\mathbf{1}-\boldsymbol{\varepsilon})\mathbf{G}')\int_{\Omega}e^{i(\mathbf{G}+\mathbf{G'}).\mathbf{r}}\det(1+\varepsilon)d^{3}r=\Omega\summe_{G}\hat{f}(\mathbf{G})\hat{g}(-\mathbf{G}[\varepsilon])[/mm]

Die rechte Seite ergibt jedoch (transformiert in reziproke Vektoren von [mm]\Omega[\varepsilon][/mm]:
[mm]\int_{\Omega[\varepsilon]}f((\mathbf{1}-\boldsymbol{\varepsilon})\mathbf{r}_{\varepsilon})g(\mathbf{r}_{\varepsilon})d^{3}r_{\varepsilon} =\summe_{G,G'}\frac{1}{\det(1-\varepsilon)}\hat{f}((\mathbf{1}+\boldsymbol{\varepsilon})\mathbf{G}[\varepsilon])\hat{g}(\mathbf{G}'[\varepsilon])\int_{\Omega[\varepsilon]}e^{i(\mathbf{G}[\varepsilon]+\mathbf{G}'[\varepsilon]).\mathbf{r}_{\varepsilon}}d^{3}r_{\varepsilon}[/mm]
[mm]= \Omega[\varepsilon]\det(1+\varepsilon)\sum_{G}\hat{f}(\mathbf{G}) \hat{g}(-\mathbf{G}[\varepsilon]) = \Omega\det(1+\varepsilon)^{2}\sum_{G}\hat{f}(\mathbf{G})\hat{g}(-\mathbf{G}[\varepsilon])[/mm]

Die beiden Seiten unterscheiden sich also um einen Faktor [mm] $\det(1+\varepsion)^{2}$, [/mm] obwohl sie gleich sein sollten.

Sieht jemand einen (den) Fehler? Ich habe schon länger drüber nachgedacht, aber ich weiss nicht, was falsch ist. Vermutlich etwas ganz einfaches, was ich nur nicht mehr sehe.

Viele Grüße,

AT-Colt


        
Bezug
Funktionen mit versch. Periode: Antwort
Status: (Antwort) fertig Status 
Datum: 05:07 Mi 24.08.2011
Autor: Al-Chwarizmi

Hallo AT-Colt,

du schreibst:

" ...$ [mm] \Omega[\varepsilon] [/mm] $ der Spat, der aus $ [mm] \Omega [/mm] $ entsteht, wenn man jedes Element von $ [mm] \Omega [/mm] $ mit der Matrix $ [mm] (\mathbf{1}+\boldsymbol{\varepsilon}) [/mm] $ multipliziert. Ich nehme $ [mm] \varepsilon [/mm] $ als klein und symmetrisch an, so dass die Inverse als $ [mm] (\mathbf{1}-\boldsymbol{\varepsilon}) [/mm] $ geschrieben werden kann."

Diese Annahme kann natürlich niemals exakt erfüllt sein !

Ohne deine Rechnungen im Detail durchgesehen zu haben,
würde ich mal sagen:
Diese Gleichung kann ohnehin nur dann ungefähr erfüllt
sein, wenn [mm] 1+\varepsilon [/mm] sehr nahe bei der Einheitsmatrix
und damit auch [mm] det(1+\varepsilon)\approx1 [/mm] ist. Also sollte
ein Faktor von dieser Form oder allenfalls auch dessen
Quadrat numerisch praktisch mit 1 gleichgesetzt werden
können ...

LG   Al-Chw.  

Bezug
                
Bezug
Funktionen mit versch. Periode: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:30 Mi 24.08.2011
Autor: AT-Colt

Hi,

danke schonmal fürs Drüberschauen. Allerdings kann man an jeder Stelle [mm] $(\mathbf{1}-\boldsymbol{\varepsilon})$ [/mm] auch durch das tatsächliche Inverse [mm] $(\mathbf{1}+\boldsymbol{\varepsilon})^{-1}$ [/mm] ersetzen:

Es ist [mm] $\mathbf{G}.\mathbf{a}$ [/mm] ein vielfaches von [mm] $2\pi$, [/mm] also gilt das auch für [mm] $\mathbf{G}[\varepsilon].\mathbf{a}[\varepsilon] [/mm] = [mm] (\mathbf{1}+\boldsymbol{\varepsilon})^{-1}\mathbf{G}.(\mathbf{1}+\boldsymbol{\varepsilon})\mathbf{a} [/mm] = [mm] \mathbf{G}.\mathbf{a}$. [/mm]
Ausserdem ist die Determinante der Inversen einer Matrix das Inverse der Determinante dieser Matrix.

Die Frage bleibt also bestehen.

Viele Grüße,

AT-Colt


Bezug
                        
Bezug
Funktionen mit versch. Periode: Entwarnung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Mi 24.08.2011
Autor: AT-Colt

Hallo Leute,

die Formel [mm]\widehat{f(\mathbf{A}\cdot)}(\mathbf{G}) = \frac{1}{\det(A)}\hat{f}(\mathbf{A}^{-1,T}\mathbf{G})[/mm] gilt wohl nur im Falle eines unbeschraenkten Gebietes.

Die Fouriertransformierte auf [mm]\Omega[/mm] ist aber mit dem Volumen gewichtet:
[mm]\hat{f}(\mathbf{G}) = \frac{1}{\Omega}\int_{\Omega}f(\mathbf{s})e^{-i\mathbf{G}.\mathbf{s}}d^{3}s[/mm]
Dieses Gewicht "schluckt" das Inverse der Determinante beim Uebergang zu [mm]\Omega[\varepsilon}][/mm]:

[mm]\widehat{g((\mathbf{1}+\boldsymbol{\varepsilon})\cdot)}(\mathbf{G}) = \frac{1}{\Omega}\int_{\Omega}g((\mathbf{1}+\boldsymbol{\varepsilon})\mathbf{s})e^{-i\mathbf{G}.\mathbf{s}}d^{3}s = \frac{1}{\Omega}\frac{1}{\det(1+\varepsilon)} \int_{\Omega[\varepsilon]}g(\mathbf{s}_{\varepsilon})e^{-i\mathbf{G}.(\mathbf{1}-\boldsymbol{\varepsilon})\mathbf{s}_{\varepsilon}}d^{3} s_{\varepsilon}[/mm]
[mm]= \frac{1}{\Omega[\varepsilon]}\int_{\Omega[\varepsilon]}g(\mathbf{s}_{\varepsilon})e^{-i(\mathbf{1}-\boldsymbol{\varepsilon})\mathbf{G}.\mathbf{s}_{\varepsilon}}d^{3} s_{\varepsilon} = \hat{g}(\mathbf{G}[\varepsilon])[/mm]

Damit kommt im Falle von der Fouriertrafo in [mm] $\Omega$ [/mm] einmal [mm] $\det(1+\varepsilon)$ [/mm] hinzu, waehrend es einmal im Falle von [mm] $\Omega[\varepsilon]$ [/mm] wegfaellt.

Wenn mir jemand bestaetigen kann, dass ich nicht noch einen Fehler gemacht habe, halte ich die Sache fuer abgeschlossen.

Viele Gruesse,

AT-Colt


Bezug
                        
Bezug
Funktionen mit versch. Periode: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Mo 29.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de