www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Funktionen und Grenzwerte
Funktionen und Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen und Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Fr 01.10.2004
Autor: Janni

Hallo,

ich brauche Eure Hilfe!!! Ich kann keine Grenzwerte berechnen, das verstehe ich einfach nicht!?
Könnt Ihr mir helfen?

Gegeben sei die Funktion x²+2x-3 geteilt durch x²+x-2
Bestimmen Sie den Definitionsbereich, Nullstellen, Asymptoten, Grenzwerte(?) und Näherungsverhalten(?) der Funktion f.
Ich weiß echt nicht, was ich machen soll.

Außerdem komme ich bei diesen Aufgaben nicht weiter.
Berechnen Sie folgende Grenzwerte:
[mm] \limes_{n\rightarrow\infty} [/mm] x²+3x+4 geteilt durch [mm] x^3-5 [/mm]

Vielleicht kann mir ja jemand erklären, wie man Grenzwerte berechnet, und ob man nach einem bestimmten System vorgehen kann oder muß, ich habe überhaupt keine Ahnung, wie das geht.
Vielen Dank!!!


        
Bezug
Funktionen und Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Fr 01.10.2004
Autor: Christian

Hallo Janni!

So viele Wünsche auf einmal *g*.
Mal sehen, ob ich dir weiterhelfen kann.
Also: Du hast da die Funktion
[mm]f(x)=\bruch{x^2+2x-3} {x^2+x-2}[/mm]

Erstmal kann man die Funktion vereinfachen, denn [mm]f(x)=\bruch{x^2+2x-3} {x^2+x-2} =\bruch{(x-1)(x+3)} {(x-1)(x+2)}= \bruch{x+3} {x+2} [/mm]
Zunächst mal der Definitionsbereich. Der Bruch ist doch eigentlich immer definiert, außer wenn der Nenner 0 ist, weil man ja nicht durch 0 teilen darf. Also darf
[mm]{x+2}[/mm] nicht 0 sein.
Das heißt im Klartext, x darf nicht -2 sein.
Das war’s schon mit dem Definitionsbereich.
Wenn man jetzt von links an die Stelle -2 rangeht (was mit einem TR leicht nachzuprüfen ist, geht der Fkt.wert gegen –unendlich, von rechts aber gegen +unendlich. Das heißt, daß der Graph eine senkrechte Asymptote an der Stelle x=-2 hat.
Damit kommen wir schon zum Näherungsverhalten, das heißt, die Grenzwerte für x gegen + oder – unendlich. Da können wir jetzt einen ganz leganten Trick anwenden. Wir klammern in dem Bruch einfach oben und unten x aus und kürzen das dann. Das sieht dann so aus:
[mm]\bruch{x+3} {x+2}=\bruch{x(1+\bruch{3} {x})} {x(1+\bruch{2} {x})} =\bruch{1+\bruch{3} {x}} {1+\bruch{2} {x}} [/mm]
Soweit so gut.
Wenn jetzt x seeeehr große Werte annimmt (d.h. gegen + oder – unendlich geht), werden [mm]\bruch{3} {x}[/mm] und [mm]\bruch{2} {x}[/mm] sehr klein, weshalb dann ja praktisch nur noch [mm]\bruch{1} {1}=1[/mm] übrig bleibt.
Das wiederum heißt, das der Graph die Gerade y=1 als Asymptote sowohl nach links als auch nach rechts hat.

Zu dem anderen Grenzwert:
Wenn x sehr groß wird, wächst [mm] x^5 [/mm] sehr viel schneller als [mm] x^3, [/mm] weshalb der Term für
x->unendlich gegen 0 geht.

Ich hoffe, daß ich etwas helfen konnte, wenn nicht, einfach noch mal nachfragen,

Gruß,
Christian


Bezug
                
Bezug
Funktionen und Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Fr 01.10.2004
Autor: Janni

Hallo Christian19,

vielen Dank für Deine schnelle Hilfe. Du hast mir wirklich geholfen.
Danke nochmal.
Viele Grüße

Janni

Bezug
                        
Bezug
Funktionen und Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Sa 02.10.2004
Autor: belgardaflo

[Dateianhang nicht öffentlich]

So schaut dein graf aus

mfg flo

Dateianhänge:
Anhang Nr. 1 (Typ: BMP) [nicht öffentlich]
Bezug
                
Bezug
Funktionen und Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Fr 01.10.2004
Autor: Paulus

Hallo Christian

ein kleiner Fehler steckt noch in deiner Antwort:

>  Also: Du hast da die Funktion
> [mm] $f(x)=\bruch{x^2+2x-3} {x^2+x-2}$ [/mm]

>

> Erstmal kann man die Funktion vereinfachen, denn
> [mm] $f(x)=\bruch{x^2+2x-3} {x^2+x-2}=\bruch{(x-1)(x+3)} {(x-1)(x+2)}=\bruch{x+3} [/mm] {x+2}$

> Zunächst mal der Definitionsbereich. Der Bruch ist doch eigentlich immer definiert, außer wenn der Nenner 0 ist, weil man ja nicht durch 0 teilen darf.
> Also darf $x+2$ nicht $0$ sein.
> Das heißt im Klartext, $x$ darf nicht $-2$ sein.


Das ist nur die halbe Wahrheit!

$x$ darf auch nicht $1$ sein! Denn: für die Bestimmung des Definitionsbereiches einer Funktion ist die Funktion, so wie sie definiert ist, zu untersuchen, nicht nach Vereinfachungen, hier also: nicht nach dem Kürzen!

Vor dem Kürzen hat die Funktion diese Gestalt:

[mm] $f(x)=\bruch{(x-1)(x+3)} [/mm] {(x-1)(x+2)}$

Da würde der Nenner $= 0$ werden, wenn $x=-2$ oder $x=1$ ist.

Gewiss, dem Funktionsraphen sieht man das dann schon nicht an, aber eine Lücke ist trotzdem vorhanden!


Mit lieben Grüssen

Paul

Bezug
        
Bezug
Funktionen und Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Fr 01.10.2004
Autor: informix

Hallo Janni,
>  
> ich brauche Eure Hilfe!!! Ich kann keine Grenzwerte
> berechnen, das verstehe ich einfach nicht!?
>  Könnt Ihr mir helfen?
>  

Schau doch mal Grenzwertsätze oder Folgen und folge den weiteren Verweisen.
Dann sollte alles klarer werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de