www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Funktionenfolgen
Funktionenfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenfolgen: Tipp/Korrektur/Alternativweg
Status: (Frage) beantwortet Status 
Datum: 19:29 Di 17.01.2012
Autor: Lustique

Aufgabe
Untersuchen Sie die angegebenen Funktionenfolgen auf punktweise und gleichmäßige Konvergenz und skizzieren Sie die Funktionsgraphen von [mm] $f_1, f_2, f_3$: [/mm]

a) [mm] $f_n\colon \mathbb{R}\to\mathbb{R}, \qquad f_n(x)=\begin{cases}1-n|x| & \text{ falls } |x|\leqslant \frac{1}{n} \\ 0 & \text{ sonst }\end{cases}$ [/mm]

b) [mm] $g_n\colon [/mm] [0, [mm] \infty]\to \mathbb{R}, \qquad g_n(x)=\frac{1}{x+n}$ [/mm]

Hallo,

ich habe irgendwie ein paar Probleme mit der Aufgabe. Ich weiß nicht, ob es daran liegt, dass es schon wieder etwas her ist, dass ich mich mit Folgen und deren Grenzwerten beschäftigt habe, oder ob ich im Moment einfach nur zu dämlich bin, aber ich wäre dankbar, wenn ihr euch meine Lösungen mal angucken könntet und mich (ggf.) berichtigen könntet.

a) [mm] $f_n$ [/mm] ist punktweise konvergent gegen [mm] $f(x)=\begin{cases}1 & \text{ für } x=0 \\ 0 & \text{ sonst }\end{cases}$. [/mm]

Für alle [mm] $x\in\mathbb{R}$ [/mm] gilt nämlich [mm] $\lim_{n\to\infty} f_n(x)=\begin{cases}1 & \text{ für } x=0 \\ 0 & \text{ sonst }\end{cases}$, [/mm] da [mm] $f_n(x)=1-n|x|$ [/mm] für [mm] $x\in\left[-\frac{1}{n},\frac{1}{n}\right]$ [/mm] gilt, und für [mm] $n\to\infty$ [/mm] daraus folgt, dass [mm] $f_n(x)=1-n|x|=0$ [/mm] nur für $x=0$ gilt.

(Ganz komische "Argumentation", aber ich weiß gerade nicht, wie ichs besser machen kann.) Ich würde das Ganze auch am liebsten direkt mit der Definition für punktweise Konvergenz machen, also mit:

Eine Funktionenfolge [mm] $(f_n)\in\mathcal{F}(M,\mathbb{C})$ [/mm] konvergiert punktweise gegen [mm] $f\in\mathcal{F}(M,\mathbb{C})$, [/mm] falls: [mm] $\forall x\in M\,\forall \varepsilon>0\,\exists n_0\in\mathbb{N}\,\forall n\geqslant n_0:\left\lvert f_n(x)-f(x)\right\rvert <\varepsilon$ [/mm]

aber ich bekomme das gerade überhaupt nicht gebacken. Weiter als [mm] $\left\lvert f_n(x)-f(x)\right\rvert=\left\lvert f_n(x)-0\right\rvert=\left\lvert f_n(x)\right\rvert=\left\lvert 1-n\cdot x\right\rvert=1-n\cdot [/mm] x$ für [mm] $0\leqslant x\leqslant \frac{1}{n}$ [/mm] (nur für positive x wegen der Symmetrie zur y-Achse) bin ich noch nicht gekommen (also kein [mm] $n_0$), [/mm] und das ist ja alles andere als weit...

Zur gleichmäßigen Konvergenz: Da [mm] $f_n$ [/mm] für alle [mm] $n\in\mathbb{N}$ [/mm] stetig ist, $f$ aber in $x=0$ unstetig ist, konvergiert [mm] $f_n$ [/mm] nicht gleichmäßig. Die Stetigkeit von [mm] $f_n$ [/mm] habe ich mir dann nur für [mm] $x=\frac{1}{n}$ [/mm] angeguckt, wobei ja da [mm] $\textstyle \lim_{x\uparrow \frac{1}{n}} f_n(x)=0=f_n(0)$ [/mm] gilt. Sonst ist [mm] $f_n$ [/mm] ja sowieso stetig (entweder konstant oder eine Gerade).

b) Hier hat mich zuallererst das [mm] $g_n\colon [/mm] [0, [mm] \infty]\to \mathbb{R}$ [/mm] verwirrt. Kann es ein geschlossenes Intervall von 0 bis [mm] $\infty$ [/mm] geben? Nein, oder?

Meiner Meinung nach konvergiert [mm] $g_n$ [/mm] nun gleichmäßig, da:

[mm] $\lim_{n\to\infty} \left(\sup_{x\in[0,\infty)}\left\lvert g_n(x)-g(x) \right\rvert\right)=\lim_{n\to\infty} \left(\sup_{x\in[0,\infty)}\left\lvert g_n(x)-0 \right\rvert\right)=\lim_{n\to\infty} \frac{1}{n}=0$ [/mm] gilt. (Größer als für $x=0$ wird [mm] $g_n$ [/mm] doch nicht, oder habe ich da die Notation nicht verstanden?)

Ist das richtig so?

        
Bezug
Funktionenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mi 18.01.2012
Autor: fred97


> Untersuchen Sie die angegebenen Funktionenfolgen auf
> punktweise und gleichmäßige Konvergenz und skizzieren Sie
> die Funktionsgraphen von [mm]f_1, f_2, f_3[/mm]:
>
> a) [mm]f_n\colon \mathbb{R}\to\mathbb{R}, \qquad f_n(x)=\begin{cases}1-n|x| & \text{ falls } |x|\leqslant \frac{1}{n} \\ 0 & \text{ sonst }\end{cases}[/mm]
>  
> b) [mm]g_n\colon [0, \infty]\to \mathbb{R}, \qquad g_n(x)=\frac{1}{x+n}[/mm]
>  
> Hallo,
>
> ich habe irgendwie ein paar Probleme mit der Aufgabe. Ich
> weiß nicht, ob es daran liegt, dass es schon wieder etwas
> her ist, dass ich mich mit Folgen und deren Grenzwerten
> beschäftigt habe, oder ob ich im Moment einfach nur zu
> dämlich bin, aber ich wäre dankbar, wenn ihr euch meine
> Lösungen mal angucken könntet und mich (ggf.) berichtigen
> könntet.
>
> a) [mm]f_n[/mm] ist punktweise konvergent gegen [mm]f(x)=\begin{cases}1 & \text{ für } x=0 \\ 0 & \text{ sonst }\end{cases}[/mm].
>
> Für alle [mm]x\in\mathbb{R}[/mm] gilt nämlich [mm]\lim_{n\to\infty} f_n(x)=\begin{cases}1 & \text{ für } x=0 \\ 0 & \text{ sonst }\end{cases}[/mm],
> da [mm]f_n(x)=1-n|x|[/mm] für
> [mm]x\in\left[-\frac{1}{n},\frac{1}{n}\right][/mm] gilt, und für
> [mm]n\to\infty[/mm] daraus folgt, dass [mm]f_n(x)=1-n|x|=0[/mm] nur für [mm]x=0[/mm]
> gilt.
>
> (Ganz komische "Argumentation",

Da stimme ich Dir zu !

> aber ich weiß gerade
> nicht, wie ichs besser machen kann.) Ich würde das Ganze
> auch am liebsten direkt mit der Definition für punktweise
> Konvergenz machen, also mit:
>
> Eine Funktionenfolge [mm](f_n)\in\mathcal{F}(M,\mathbb{C})[/mm]
> konvergiert punktweise gegen [mm]f\in\mathcal{F}(M,\mathbb{C})[/mm],
> falls: [mm]\forall x\in M\,\forall \varepsilon>0\,\exists n_0\in\mathbb{N}\,\forall n\geqslant n_0:\left\lvert f_n(x)-f(x)\right\rvert <\varepsilon[/mm]
>  
> aber ich bekomme das gerade überhaupt nicht gebacken.
> Weiter als [mm]\left\lvert f_n(x)-f(x)\right\rvert=\left\lvert f_n(x)-0\right\rvert=\left\lvert f_n(x)\right\rvert=\left\lvert 1-n\cdot x\right\rvert=1-n\cdot x[/mm]
> für [mm]0\leqslant x\leqslant \frac{1}{n}[/mm] (nur für positive x
> wegen der Symmetrie zur y-Achse) bin ich noch nicht
> gekommen (also kein [mm]n_0[/mm]), und das ist ja alles andere als
> weit...


Mach es so:

Sei x [mm] \in \IR. [/mm]

Fall 1: x= 0. Dann [mm] f_n(0)=1 \to [/mm] 1 (n [mm] \to \infty) [/mm]

Fall 2: x [mm] \ne [/mm] 0. Dann gibt es ein N [mm] \in \IN [/mm] mit: 1/N <|x|. Damit ist 1/n <|x| für alle n>N, also ist

            [mm] f_n(x)=0 [/mm] für alle n>N.

Somit: [mm] f_n(x) \to [/mm] 0 für n [mm] \to \infty. [/mm]


>
> Zur gleichmäßigen Konvergenz: Da [mm]f_n[/mm] für alle
> [mm]n\in\mathbb{N}[/mm] stetig ist, [mm]f[/mm] aber in [mm]x=0[/mm] unstetig ist,
> konvergiert [mm]f_n[/mm] nicht gleichmäßig. Die Stetigkeit von [mm]f_n[/mm]
> habe ich mir dann nur für [mm]x=\frac{1}{n}[/mm] angeguckt, wobei
> ja da [mm]\textstyle \lim_{x\uparrow \frac{1}{n}} f_n(x)=0=f_n(0)[/mm]
> gilt. Sonst ist [mm]f_n[/mm] ja sowieso stetig (entweder konstant
> oder eine Gerade).


Das ist O.K.


>  
> b) Hier hat mich zuallererst das [mm]g_n\colon [0, \infty]\to \mathbb{R}[/mm]
> verwirrt. Kann es ein geschlossenes Intervall von 0 bis
> [mm]\infty[/mm] geben? Nein, oder?

Das wird ein Tippfehler sein. Gemeint ist $[0, [mm] \infty)$ [/mm]


>
> Meiner Meinung nach konvergiert [mm]g_n[/mm] nun gleichmäßig, da:
>  
> [mm]\lim_{n\to\infty} \left(\sup_{x\in[0,\infty)}\left\lvert g_n(x)-g(x) \right\rvert\right)=\lim_{n\to\infty} \left(\sup_{x\in[0,\infty)}\left\lvert g_n(x)-0 \right\rvert\right)=\lim_{n\to\infty} \frac{1}{n}=0[/mm]
> gilt. (Größer als für [mm]x=0[/mm] wird [mm]g_n[/mm] doch nicht, oder habe
> ich da die Notation nicht verstanden?)

Doch, Du hast alles richtig verstanden, es ist

         [mm] $|g_n(x)|=g_n(x) \le [/mm] 1/n$  für jedes x [mm] \ge [/mm] 0 und jedes n.

FRED

>  
> Ist das richtig so?  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de