www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Funktionenraum
Funktionenraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Sa 24.11.2012
Autor: MrPan

Aufgabe
1)Zeigen Sie: [mm] U_d [/mm] ist ein UVR von [mm] \IR[x] [/mm] , d [mm] \le [/mm] Grad

2)Zeigen Sie ebenfalls dass der Schnitt über [mm] \bigcap_{d\in \IN}U_d [/mm] wieder einen UVR bildet. Hinweis: Isomorphismus zwischen zwei UVR.



Hallo,

ich habe mal wieder eine Aufgabe bei der ich nicht ganz verstehe was ich machen soll.

Zu 1: Es gilt ja zu zeigen das der UVR nicht leer ist, Teilmenge von R[x], und die Abgeschlossenheit der Addition und Skalarmultiplikation.

Meine Idee: Der vektorraum ist nicht leer da aufjedenfall d=0 drin ist also [mm] a_0*x^0, a\not=0 [/mm]

Teilmenge ist es er auch da R[x] alle "Grad" enthält und [mm] U_d [/mm] nur die bis zu einem bestimmten Grad.  also [mm] R[x]=\summe_{i=0}^{d}p_i*x_i+\summe_{k=d+1}^{Grad}p_k*x_k [/mm]
R[x]= [mm] U_d [/mm] + [Rest]

also Teilmenge.

Die Abgeschossenheit
(p+q)(x)= [mm] \summe_{i=0}^{d}(p_i+q_i)*x_i [/mm] + [mm] \summe_{k=d+1}^{Grad} (p_k+q_k)*x_k) [/mm] und da d kleiner gleich d und R[x] Vektorraum fällt der zweite teil weg und es Gilt die Abgeschossenheit. Man kann ja auch sagen das das [mm] x^d+x^d=2*x^d [/mm] ist also dass sich der Grad nicht ändert, und somit aus dem Vektorraum fliegt.

zu 2) Hier hab ich nur: [mm] K:={[U_d|d\in \IN]} [/mm] ein UVR(Aufgabe1) und [mm] S=\bigcap_{d\in \IN}U_d [/mm]

Sei u, v [mm] \in [/mm] S und k,l [mm] \in \IZ [/mm] dann gilt u,v [mm] \in U_d [/mm] deshalb liegt auch k*u+l*v  in [mm] U_d [/mm] (da [mm] U_d [/mm] Vekorraum), für alle d [mm] \in [/mm] N, daraus folgt ja das S wieder ein Untervektorraum ist das er nicht Leer [mm] ist(U_d [/mm] liegt drin) er ist teilmenge von R[x], und es gilt eben das Distributivgesetz.

Aber das ist ja kein Isomorphismus zwischen zwei [mm] U_d [/mm] 's, lieg ich falsch oder muss ich anders ansetzten?
Vielen Dank für eure Hilfe!

Gruß Mike


        
Bezug
Funktionenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 So 25.11.2012
Autor: fred97


> 1)Zeigen Sie: [mm]U_d[/mm] ist ein UVR von [mm]\IR[x][/mm] , d [mm]\le[/mm] Grad
>
> 2)Zeigen Sie ebenfalls dass der Schnitt über [mm]\bigcap_{d\in \IN}U_d[/mm]
> wieder einen UVR bildet. Hinweis: Isomorphismus zwischen
> zwei UVR.


So ist das nicht zu verstehen. Was soll d [mm]\le[/mm] Grad  bedeuten ? Wie ist [mm] U_d [/mm] definiert ?

Ich vermute:  [mm] U_d [/mm] ist die Menge aller Polynome mit Grad [mm] \le [/mm] d.

Dann macht für mich aber der HInweis zu 2) keinen Sinn.

FRED

>  
>
> Hallo,
>  
> ich habe mal wieder eine Aufgabe bei der ich nicht ganz
> verstehe was ich machen soll.
>  
> Zu 1: Es gilt ja zu zeigen das der UVR nicht leer ist,
> Teilmenge von R[x], und die Abgeschlossenheit der Addition
> und Skalarmultiplikation.
>  
> Meine Idee: Der vektorraum ist nicht leer da aufjedenfall
> d=0 drin ist also [mm]a_0*x^0, a\not=0[/mm]
>
> Teilmenge ist es er auch da R[x] alle "Grad" enthält und
> [mm]U_d[/mm] nur die bis zu einem bestimmten Grad.  also
> [mm]R[x]=\summe_{i=0}^{d}p_i*x_i+\summe_{k=d+1}^{Grad}p_k*x_k[/mm]
>  R[x]= [mm]U_d[/mm] + [Rest]
>
> also Teilmenge.
>  
> Die Abgeschossenheit
> (p+q)(x)= [mm]\summe_{i=0}^{d}(p_i+q_i)*x_i[/mm] +
> [mm]\summe_{k=d+1}^{Grad} (p_k+q_k)*x_k)[/mm] und da d kleiner
> gleich d und R[x] Vektorraum fällt der zweite teil weg und
> es Gilt die Abgeschossenheit. Man kann ja auch sagen das
> das [mm]x^d+x^d=2*x^d[/mm] ist also dass sich der Grad nicht
> ändert, und somit aus dem Vektorraum fliegt.
>  
> zu 2) Hier hab ich nur: [mm]K:={[U_d|d\in \IN]}[/mm] ein
> UVR(Aufgabe1) und [mm]S=\bigcap_{d\in \IN}U_d[/mm]
>
> Sei u, v [mm]\in[/mm] S und k,l [mm]\in \IZ[/mm] dann gilt u,v [mm]\in U_d[/mm]
> deshalb liegt auch k*u+l*v  in [mm]U_d[/mm] (da [mm]U_d[/mm] Vekorraum), für
> alle d [mm]\in[/mm] N, daraus folgt ja das S wieder ein
> Untervektorraum ist das er nicht Leer [mm]ist(U_d[/mm] liegt drin)
> er ist teilmenge von R[x], und es gilt eben das
> Distributivgesetz.
>  
> Aber das ist ja kein Isomorphismus zwischen zwei [mm]U_d[/mm] 's,
> lieg ich falsch oder muss ich anders ansetzten?
>  Vielen Dank für eure Hilfe!
>  
> Gruß Mike
>  


Bezug
                
Bezug
Funktionenraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:39 So 25.11.2012
Autor: MrPan


> > 1)Zeigen Sie: [mm]U_d[/mm] ist ein UVR von [mm]\IR[x][/mm] , d [mm]\le[/mm] Grad
> >
> > 2)Zeigen Sie ebenfalls dass der Schnitt über [mm]\bigcap_{d\in \IN}U_d[/mm]
> > wieder einen UVR bildet. Hinweis: Isomorphismus zwischen
> > zwei UVR.
>  
>
> So ist das nicht zu verstehen. Was soll d [mm]\le[/mm] Grad  
> bedeuten ? Wie ist [mm]U_d[/mm] definiert ?
>  
> Ich vermute:  [mm]U_d[/mm] ist die Menge aller Polynome mit Grad [mm]\le[/mm]
> d.

Tut mir leid, du hast völlig recht, ich komm mit den Formeleditor noch nicht so zu recht, Grad kleiner gleich d ist gemeint. R[x] ist der Vektorraum der reelen polynome.

>  
> Dann macht für mich aber der HInweis zu 2) keinen Sinn.

Ach wie dumm ich sollte noch mal durchlesen was ich poste, es tut mir leid

Die Frage ist ob der Schnitt über alle [mm] U_d [/mm] einen UVR bildet, und man soll das beweisen via Isomorphismus zwischen dem Schnitt und einen bestimmten Vektorraum der isomorph ist. Dann ist mein Lösungansatz auch falsch.

Ich hab jetzt aber auch keine Idee welchen Vektorraum ich suchen soll.


Danke für deine Hilfe!

Gruß mike




>  
> FRED
>  >  
> >
> > Hallo,
>  >  
> > ich habe mal wieder eine Aufgabe bei der ich nicht ganz
> > verstehe was ich machen soll.
>  >  
> > Zu 1: Es gilt ja zu zeigen das der UVR nicht leer ist,
> > Teilmenge von R[x], und die Abgeschlossenheit der Addition
> > und Skalarmultiplikation.
>  >  
> > Meine Idee: Der vektorraum ist nicht leer da aufjedenfall
> > d=0 drin ist also [mm]a_0*x^0, a\not=0[/mm]
> >
> > Teilmenge ist es er auch da R[x] alle "Grad" enthält und
> > [mm]U_d[/mm] nur die bis zu einem bestimmten Grad.  also
> > [mm]R[x]=\summe_{i=0}^{d}p_i*x_i+\summe_{k=d+1}^{Grad}p_k*x_k[/mm]
>  >  R[x]= [mm]U_d[/mm] + [Rest]
> >
> > also Teilmenge.
>  >  
> > Die Abgeschossenheit
> > (p+q)(x)= [mm]\summe_{i=0}^{d}(p_i+q_i)*x_i[/mm] +
> > [mm]\summe_{k=d+1}^{Grad} (p_k+q_k)*x_k)[/mm] und da d kleiner
> > gleich d und R[x] Vektorraum fällt der zweite teil weg und
> > es Gilt die Abgeschossenheit. Man kann ja auch sagen das
> > das [mm]x^d+x^d=2*x^d[/mm] ist also dass sich der Grad nicht
> > ändert, und somit aus dem Vektorraum fliegt.
>  >  
> > zu 2) Hier hab ich nur: [mm]K:={[U_d|d\in \IN]}[/mm] ein
> > UVR(Aufgabe1) und [mm]S=\bigcap_{d\in \IN}U_d[/mm]
> >
> > Sei u, v [mm]\in[/mm] S und k,l [mm]\in \IZ[/mm] dann gilt u,v [mm]\in U_d[/mm]
> > deshalb liegt auch k*u+l*v  in [mm]U_d[/mm] (da [mm]U_d[/mm] Vekorraum), für
> > alle d [mm]\in[/mm] N, daraus folgt ja das S wieder ein
> > Untervektorraum ist das er nicht Leer [mm]ist(U_d[/mm] liegt drin)
> > er ist teilmenge von R[x], und es gilt eben das
> > Distributivgesetz.
>  >  
> > Aber das ist ja kein Isomorphismus zwischen zwei [mm]U_d[/mm] 's,
> > lieg ich falsch oder muss ich anders ansetzten?
>  >  Vielen Dank für eure Hilfe!
>  >  
> > Gruß Mike
>  >  
>  


Bezug
                        
Bezug
Funktionenraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 27.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de