www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Funktionenreihen/gleichm. konv
Funktionenreihen/gleichm. konv < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenreihen/gleichm. konv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 23.04.2012
Autor: EvelynSnowley2311

Aufgabe
Untersuche die folgenden Funktionenreihen auf gleichmäßige Konvergenz:

a) f(x) = [mm] \summe_{n=1}^{\infty} \bruch{sin(nx)}{n^\alpha} [/mm] , [mm] \alpha \in \IR [/mm] , x [mm] \in \IR [/mm]

b) [mm] \summe_{n=1}^{\infty} \bruch{1}{n^z} [/mm] , z [mm] \in \IC [/mm] mit Re(z) [mm] \ge 1+\varepsilon [/mm] > 1


huhu,

ich bin mir nicht sicher wie das bei Reihen geht. Ein Satz aus dem Internet den ich gefunden habe sagt, dass wenn meine Reihe in Absolutbeträgen  eine absolut konvergente Majorante hat, die unabhängig von x ist, dann konvergiert meine Reihe auch gleichmäßig.


In etwa so hab ichs dann gemacht:

[mm] \summe_{n=1}^{\infty} \bruch{sin(nx)}{n^\alpha} \le \summe_{n=1}^{\infty} |\bruch{sin(nx)}{n^\alpha}| \le \summe_{n=1}^{\infty} \bruch{1}{n^\alpha} [/mm]

So. dies konvergiert also für [mm] \alpha [/mm] > 1 und für [mm] \alpha [/mm] = 0 ist sie nicht definiert. Daher konvergiert meine Reihe für [mm] \alpha [/mm] > 1 gleichmäßig. Für [mm] \alpha [/mm] = 1 oder < 0 divergiert die Reihe an und für sich, kann ich sagen dass bei Divergenz die Funktionenreihe nicht konvergiert?

Lg,

Eve

        
Bezug
Funktionenreihen/gleichm. konv: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 23.04.2012
Autor: rainerS

Hallo!

> Untersuche die folgenden Funktionenreihen auf
> gleichmäßige Konvergenz:
>  
> a) [mm]f(x) = \summe_{n=1}^{\infty} \bruch{sin(nx)}{n^\alpha}[/mm] ,
> [mm]\alpha \in \IR[/mm] , x [mm]\in \IR[/mm]
>  
> b) [mm]\summe_{n=1}^{\infty} \bruch{1}{n^z}[/mm] , z [mm]\in \IC[/mm] mit
> Re(z) [mm]\ge 1+\varepsilon[/mm] > 1
>  
> huhu,
>  
> ich bin mir nicht sicher wie das bei Reihen geht.

Konvergenz von Reihen ist immer als Kovergenz der Partialsummenfolge definiert. Also:

  [mm]\summe_{n=1}^{\infty} \bruch{sin(nx)}{n^\alpha}[/mm]

konvergiert (gleichmäßig), wenn

  [mm]f_m(x)= \summe_{n=1}^{m} \bruch{sin(nx)}{n^\alpha}[/mm]

für [mm] $m\to\infty$ [/mm] (gleichmäßig) konvergiert.

> Ein Satz
> aus dem Internet den ich gefunden habe sagt, dass wenn
> meine Reihe in Absolutbeträgen  eine absolut konvergente
> Majorante hat, die unabhängig von x ist, dann konvergiert
> meine Reihe auch gleichmäßig.
>  
>
> In etwa so hab ichs dann gemacht:
>  
> [mm]\summe_{n=1}^{\infty} \bruch{sin(nx)}{n^\alpha} \le \summe_{n=1}^{\infty} |\bruch{sin(nx)}{n^\alpha}| \le \summe_{n=1}^{\infty} \bruch{1}{n^\alpha}[/mm]
>  
> So. dies konvergiert also für [mm]\alpha > 1[/mm] und für [mm]\alpha = 0[/mm] ist sie nicht definiert.

Nein, sie divergiert für [mm] $\alpha=0$. [/mm]

> Daher konvergiert meine Reihe
> für [mm]\alpha > 1[/mm] gleichmäßig. Für [mm]\alpha = 1[/mm] oder < 0
> divergiert die Reihe an und für sich, kann ich sagen dass
> bei Divergenz die Funktionenreihe nicht konvergiert?

Nein, denn du kannst den Schluss nicht einfach umkehren.  Denke an alternierende Reihen: selbst wenn sie nicht absolut konvergieren, können sie immer noch konvergieren.

Aber da es um glm. Konvergenz geht, reicht es, wenn du einen Wert von x findest, für den die Reihe divergiert. (Denn glm. Konvergenz heißt ja, dass die Konvergenz unabhängig von x ist.)

Also: kannst du einen Wert von x finden, für den [mm] $\sin(nx)$ [/mm] immer positiv ist, z.B. immer 1?

  Viele Grüße
    Rainer


Bezug
                
Bezug
Funktionenreihen/gleichm. konv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 23.04.2012
Autor: EvelynSnowley2311

hmm ja,

wenn x = [mm] \bruch{\pi}{2n} [/mm]

aber genau das hab ich ja mit meinem abschätzen zur Majorante doch bereits getan oder?^^

Bezug
                        
Bezug
Funktionenreihen/gleichm. konv: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Mo 23.04.2012
Autor: rainerS

Hallo!


> hmm ja,
>  
> wenn x = [mm]\bruch{\pi}{2n}[/mm]

n ist doch der Summationsindex, du kannst doch nicht für jeden Summanden ein anderes x nehmen. Du brauchst ein x, sodass [mm] $\sin(nx)=1$ [/mm] für alle n.

  Viele Grüße
    Rainer



Bezug
                                
Bezug
Funktionenreihen/gleichm. konv: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:41 Di 24.04.2012
Autor: EvelynSnowley2311

hmm,

dann würd ich sagen nein. So ein x existiert nicht. der Sinus ist 1 bei pi/2. aber wenn ich n durchlaufe mit 1,2,3,4 bleibts niemals positiv, richtig?


Bezug
                                        
Bezug
Funktionenreihen/gleichm. konv: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Do 26.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de