www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Funktionenschar
Funktionenschar < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Do 01.02.2007
Autor: Kerschtin

Aufgabe
Gegeben ist die Funktionenschar ft(x)=((-2X)/t)*e^(t-X) mit t>0
Untersuchen sie die Funktionenschar und bestimmen sie die Ortskurve der Wendepunkte

Zeigen sie, dass die Funktionen fk mit fk(x)=(k*e^(-X))/(k+e^(-X)) für kein k>0 Extremwerte besitzen und die Wendepunkte auf dem Graphen von h mit h(x)=0,5*e^(-x) liegen

Ich hab echt immer totale Probleme mit solchen Funktionenscharen... Kann mir jemand helfen???

        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Do 01.02.2007
Autor: angela.h.b.


> Gegeben ist die Funktionenschar [mm] f_t(x)=-\bruch{2x}{t}*e^{t-x}mit [/mm]
> t>0
>  Untersuchen sie die Funktionenschar und bestimmen sie die
> Ortskurve der Wendepunkte

Hallo,

schauen wir zunächst einmal auf dei erste Aufgabe, die zweite bekommst Du vielleicht später alleine hin.

Bevor wir jetzt völlig panisch losrechnen, sollten wir erst überlegen, was es mit der Funktionenschar auf sich hat.

Ein Funktionenschar sind ganz viele Funktionen, [mm] f_1, f_5, f_{569}, f_{\wurzel{17}} [/mm] usw. Immer wird in der Funktion für t der entsprechende Index eingesetzt.

Hast Du Dir solch eine Funktionenschar schonmal aufgemalt?
Mit einem Plotter macht das wenig Mühe und sogar Spaß, ich verwende im Moment diesen []online-plotter.

Durch die rechenrische Beschäftigung mit [mm] f_t [/mm] bearbeitet man alle diese Funktionen gleichzeitig. Man ermittelt Ergenisse abhängig von t, und kann dann durch Einsetzen feststellen, wie z.B. der Extremwert für die Funktion mit t=5 lautet.

Im Verlauf der Rechnung ist t nicht wie eine Variable zu behandeln, sondern so als stünde da irgendeine normal Zahl, z.B. 5.

Wenn Dir das t unheimlich ist, kannst Du ja auch erstmal dieFunktion für t=5 diskutieren, danach fällt Dir der Fall mit dem allgemeinen t sicher leichter.

Was macht Ihr denn so, wenn Ihr Funktionen untersucht?

Du kannst ja mal mit dem Schnittpunkt mit der x-Achse anfangen, also die Nullstellen bestimmen.

Wenn das gut läuft, vielleicht die erste Ableitung, um den Extremwerten auf dei Spur zu kommen. (Wie gesagt: t wie eine Konstante Zahl behandeln.)

Mach zunächst eine ganz normale Kurvendiskussion und denk gar nicht an die Ortskurve. Die kommt später dran.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de