www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Funktionenschar
Funktionenschar < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Mi 07.01.2009
Autor: kilchi

Aufgabe
Gegeben ist die Funktionenschar [mm] f_{a} [/mm] (a>0) :

[mm] f_{a}(x) [/mm] = [mm] -\bruch{x^4}{a2}+ x^2 [/mm] + [mm] \bruch{3a}{2} [/mm]  für x [mm] \in \IR [/mm]

a)Gibt es Eigenschaften, die für alle Funktionen der Schar gelten? Begründen Sie Ihre Antwort.

b)Für welchen Wert von a hat die Ableitung [mm] f_{'a} [/mm] genau drei Nullstellen [mm] x_1 [/mm] = 0, [mm] x_2 [/mm] =1 und [mm] x_3 [/mm] = -1?

c) Bestimmen Sie alle Extrema von [mm] f_1 [/mm]

Guten Abend

Ich habe hier so meine Schwierigkeiten und wäre deshalb dankbar, wenn sich jemand die Zeit nimmt, mir zu helfen!
Einige Ideen habe ich, evtl. korrigieren oder ergänzen.

Jetzt schon ein grosses Dankeschön für eure Antworten!!!

Mit freundlichem Gruss

Kilchi

a) Ich nehme an, das alle Funktionen gerade sind, da man auf den Summand mit dem grössten Exponent schauen muss, der ist 4 also immer gerade.

Gibt es weitere Eigenschaften???

b) ??? Wie komme ich auf diese Lösung?

c) Muss ich hier die Ableitung nehmen?

[mm] f_{'a}(x) [/mm] = - [mm] \bruch{2x^{3}}{a}+2x=0 [/mm]

doch dann????

        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 07.01.2009
Autor: MathePower

Hallo kilchi,

> Gegeben ist die Funktionenschar [mm]f_{a}[/mm] (a>0) :
>  
> [mm]f_{a}(x)[/mm] = [mm]-\bruch{x^4}{a2}+ x^2[/mm] + [mm]\bruch{3a}{2}[/mm]  für x [mm]\in \IR[/mm]
>  
> a)Gibt es Eigenschaften, die für alle Funktionen der Schar
> gelten? Begründen Sie Ihre Antwort.
>  
> b)Für welchen Wert von a hat die Ableitung [mm]f_{'a}[/mm] genau
> drei Nullstellen [mm]x_1[/mm] = 0, [mm]x_2[/mm] =1 und [mm]x_3[/mm] = -1?
>  
> c) Bestimmen Sie alle Extrema von [mm]f_1[/mm]
>  Guten Abend
>  
> Ich habe hier so meine Schwierigkeiten und wäre deshalb
> dankbar, wenn sich jemand die Zeit nimmt, mir zu helfen!
>  Einige Ideen habe ich, evtl. korrigieren oder ergänzen.
>  
> Jetzt schon ein grosses Dankeschön für eure Antworten!!!
>  
> Mit freundlichem Gruss
>  
> Kilchi
>  
> a) Ich nehme an, das alle Funktionen gerade sind, da man
> auf den Summand mit dem grössten Exponent schauen muss, der
> ist 4 also immer gerade.
>  
> Gibt es weitere Eigenschaften???


Wenn die Funktion gerade ist, was ist sie dann?


>  
> b) ??? Wie komme ich auf diese Lösung?


Setze

[mm]f_{a}'\left(x\right)=\alpha*x*\left(x-1\right)*\left(x+1\right)[/mm]

und vergleiche dann Koeffizienten vor dem gleichen Exponenten.


>  
> c) Muss ich hier die Ableitung nehmen?
>  
> [mm]f_{'a}(x)[/mm] = - [mm]\bruch{2x^{3}}{a}+2x=0[/mm]
>  
> doch dann????


Nach x auflösen und mit Hilfe der zweiten Ableitung prüfen,
welcher Art das Extrema ist.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de