www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Funktionsbeispiel finden
Funktionsbeispiel finden < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsbeispiel finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Di 20.04.2010
Autor: snoopy89

Aufgabe
Geben Sie eine Funktion f:[-2,2] [mm] \to \IR [/mm] x [mm] \IR [/mm] an, welche die Bedingung [mm] f([-2,2])={(x_1,x_2) \in \IR x \IR : x_1^2 + x_2^2 = 1} [/mm] erfüllt. Benutzen Sie hierfür auch Schulwissen.

hallo,

ich verstehe nicht so ganz, wie so eine funktion existieren soll. erstmal fiel mir auf, dass dies ja [mm] (cosx)^2+(sinx)^2=1 [/mm] sehr ähnlich sieht. jedoch müssten doch dann [mm] x_1 [/mm] und [mm] x_2 [/mm] gleich sein oder?

als nächstes dachte ich daran, die gleichung umzustellen. dann wäre [mm] x_1=\wurzel{1-x_2^2}. [/mm] hierbei dürfte [mm] x_2 [/mm] allerdings nur auf dem intervall [-1,1] existieren, da sonst die wurzel nicht definiert wäre.

da es auf diese aufgabe 5 punkte geben soll, denke ich, dass mehr hinter dieser aufgabe steckt. kann mir vielleicht jemand helfen, das beispiel zu finden? und muss ich das dann noch für das beispiel zeigen oder begründen? steht ja an sich nicht da, aber sonst gäbe es zu viele punkte für ein einziges beispiel...

vielen dank schonmal an die helfenden

        
Bezug
Funktionsbeispiel finden: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 23:38 Di 20.04.2010
Autor: ChopSuey

Hallo,

$\ I = [-2,2] $ ist ein kompaktes Intervall. Also nehme ich an, dass die allg. Funktionsvorschrift lautet

$\ f: I [mm] \to \IR \times \IR, [/mm] \ [mm] x_1 \mapsto x_1^2 [/mm] + [mm] x_2^2 [/mm] $.

Es werden solche Werte $\ [mm] x_1 \in [/mm] [-2,2]$ gesucht, für die $\ [mm] f(x_1) [/mm] = 1 $

Wenn ich nichts uebersehen habe, hängt der Wert $\ [mm] x_2 [/mm] $ im Wesentlichen davon ab, wie du $\ [mm] x_1 [/mm] $ wählst.

Mit $\ [mm] x_1 [/mm] = 0 $ erhältst du $\ f(0) = 1 [mm] \gdw x_2^2 [/mm] = 1 [mm] \gdw x_2 [/mm] = 1 $.

Viele Grüße
ChopSuey



Bezug
                
Bezug
Funktionsbeispiel finden: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:52 Mi 21.04.2010
Autor: angela.h.b.


> Hallo,
>  
> [mm]\ I = [-2,2][/mm] ist ein kompaktes Intervall. Also nehme ich
> an, dass die allg. Funktionsvorschrift lautet
>  
> [mm]\ f: I \to \IR \times \IR, \ x_1 \mapsto x_1^2 + x_2^2 [/mm].

Hallo,

ganz sicher ist das nicht die Funktionsvorschrift, denn wie Du ja selbst schreibst, bildet f aus dem Intervall [-2,2] in die Menge [mm] \IR\times\IR [/mm] ab.

Also gibt es Funktionen [mm] f_1, f_2:[-2,2]\to\IR [/mm] mit  [mm] f(x):=(f_1(x), f_2(x)), [/mm]

und nun soll die Bedingung [mm] f_1^2(x)+f_2^2(x)=1 [/mm] für alle x [mm] \in [/mm] [-2,2] gelten.

Sehr billig bekommt man das mit f(x):=(1,0) oder f(x):=(0,1),

eine kostbarere Funktion hat Fred unten gesagt.

Gruß v. Angela


> Es werden solche Werte [mm]\ x_1 \in [-2,2][/mm] gesucht, für die [mm]\ f(x_1) = 1[/mm]
>  
> Wenn ich nichts uebersehen habe, hängt der Wert [mm]\ x_2[/mm] im
> Wesentlichen davon ab, wie du [mm]\ x_1[/mm] wählst.
>  
> Mit [mm]\ x_1 = 0[/mm] erhältst du [mm]\ f(0) = 1 \gdw x_2^2 = 1 \gdw x_2 = 1 [/mm].
>  
> Viele Grüße
>  ChopSuey
>  
>  


Bezug
        
Bezug
Funktionsbeispiel finden: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 21.04.2010
Autor: fred97

Wie wärs mit $f(t)= [mm] (cos(\bruch{\pi}{2}t), sin(\bruch{\pi}{2}t))$, $t\in [/mm] [-2,2]$ ?

FRED

Bezug
                
Bezug
Funktionsbeispiel finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Mi 21.04.2010
Autor: snoopy89

hmm wenn man das so sieht, wirkt es immer so einfach^^ hätte man drauf kommen können...

vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de