www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionschar; brauche Hilfe
Funktionschar; brauche Hilfe < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionschar; brauche Hilfe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 19.02.2006
Autor: arab

Aufgabe
[mm] F_{a}(x) [/mm] = 10x e^-ax² (= Soll "e hoch -ax²" bedeuten)

a)
Ermitteln sie den größtmöglichen Definitionsbereich der Funktionschar [mm] F_{a}, [/mm] sowie die Schnittpunkte der Funktionschar [mm] F_{a} [/mm] mit den Koordinatenachsen.

b)
Untersuchen sie die Graphen der [mm] F_{a} [/mm] auf Symetrie und Asymptoten.

c)
Ermitteln sie die Extrem- und Wendepunkte von [mm] F_{a}. [/mm]

d)
Zeigen sie dass [mm] F_{a}(x) [/mm] = - [mm] \bruch{5}{a} [/mm] e^-ax² eine Stammfunktion von [mm] F_{a} [/mm] ist.

Hallo zusammen

Wir haben das Thema vor kurzem aufgegriffen und ich muss ehrlich sagen, dass ich einfach nicht weiß, wie ich bei einer solchen Aufgabe beginnen soll. (Probleme beim Erstellen von Ableitungen, einer "e-Funktion")

Wäre echt genial, wenn mir jemand als Hilfe einige Lösungsansätze (Am liebsten natürlich eine Musterlösung ;-)) geben und erklären könnte, damit ich die Aufgabe als Hilfestellung für weitere verwenden kann.

Vielen Dank im Voraus

Gruß

Arab


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionschar; brauche Hilfe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 19.02.2006
Autor: Pi3141

Ich gebe dir jetzt eine Lösungsansätze:

a) Bei der Suche nach dem Definitionsbereich, musst du schauen, was du einsetzten darfst. Bei e-Funktionen sind das immer alle Zahlen, also ist hier der Definitionsbereich [mm] \IR. [/mm]
Beim Definitionsbereich musst du prinzipiell nur aufpassen, dass keine Nenner 0 werden (hier einfach, da es keine Nenner gibt) und dass unter Wurzeln und Logarithmen nichts negatives steht. e-Funktionen sind, wie schon erwähnt unkritisch.

Bei dem Schnitt mit den Koordinatenachsen schaust du zuerst, wo trifft die Funktion die y-Achse, d.h. was passiert bei x=0. (Hier: 0) Danach schaust du nach Schnittpunkten mit der x-Achse, also wo x=0 ist. Du setzt dabei [mm] f_a(x)=0 [/mm] und schust nach Lösungen. Du weisst, dass die e-Funktion nicht 0 werden kann, deshalb müssen bei diesem Produkt die 10x 0 ergeben, was natürlich nur bei x=0 erfüllt ist.

b) Bei den Symetrien setzt du -x in f ein und schaust, ob wieder f(x) => Achsensymetrisch oder -f(x)=> Punktsymetrisch herauskommt. Sollte weder noch herauskommen, hat die Funktion keine einfache Symetrie. Diese Funktion ist Punktsymetrisch, wie du leicht nachrechnen kannst.

Bei Asymptoten musst du nachschauen, wohin die Funktion geht, wenn x ins Unendliche geht. Betrachte hierzu die Funktion wieder als Produkt zwischen 10x und [mm] e^{-ax^2}. [/mm] Wenn x gegen [mm] +\infty [/mm] geht, geht 10x auch gegen [mm] \infty, [/mm] aber die e-Funktion nimmt schneller ab, deshalb geht die Funktion gegen 0.
Wenn x gegen [mm] -\infty [/mm] geht, geht der e-Teil wieder gegen 0, wegen dfem [mm] x^2, [/mm] der 10x-Teil gegen [mm] -\infty. [/mm] Das e fällt wieder schneller und die Funktion geht wieder gegen 0.
[mm] \limes_{x\rightarrow\pm\infty}f_{a}(x)=0 [/mm]

C) Extrem- und Wendepunkte:
Hier bildest du die Ableitung und setzt sie 0. Bei dieser Aufgabe brauchst du Ketten- und Produktregel. Bei e-Funktionen musst du bei der Produktregel immer nur die Ableitung von dem Zeug, das oben beim e steht mit der ursprünglichen e-Funktion multiplizieren. Ich heb die innere Ableitung mal zwischen die grün-Tags gesetzt.
f(x)=10x [mm] e^{-ax^2} [/mm]
[mm] f_{a}'(x)=10*e^{-ax^2}+10x*[green](-a*2x)[/green]*e^{-ax^2} [/mm]
Am Besten du vereinfachst das noch zu [mm] f_{a}'(x)=(10-20ax^2)e^{-ax^2}. [/mm]
Zum Nullsetzten einfach wieder den e-Teil vernachlässigen (der wird ja nie Null) und nur [mm] 10-20ax^2 [/mm] Null setzten. Das ergibt dann [mm] \pm \bruch{\wurzel{2a}}{2a}. [/mm] Das musst du jetzt nur noch in die Ausgangsfunktion einsetzten und dann hast du die Koordinaten. Um herauszufinden, ob es ein Hoch- oder ein Tiefpunkt ist, verwendest du beim Hochpunkt rechts am besten den Vorzeichenwechsel und am Tiefpunkt links sagst du, dass der Graf punbktsymetrisch ist, und deshalb im Negativen ein Tiefpunkt existiert.

Analog gehen die Wendepunkte.

d)
Die Funktion, die du hier hast, musst du nur ableiten. Wenn es sich um eine Stammfunktion handelt, kommt bei der Ableitung deine ursprüngliche Funktion heraus.

Hoffe du das alles verstanden. Wünsche dir dann noch viel Glück bei der Abi-Vorbereitung (worum es hier ja sicherlich geht).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de