www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktionsgleichung aufstellen
Funktionsgleichung aufstellen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mi 20.09.2006
Autor: Vilinja

Wir sollen eine Funktion finden, die so aussieht wie die hier: (nur ne Skizze...)
[Dateianhang nicht öffentlich]
...wie ein "Geist".
Ich hab mir überlegt, das Koordinatensystem in die Mitte zu legen, so dass das ganze dann symmetrisch zur y-Achse ist. Dann sind in der Funktion ja nur gerade Hochzahlen.
Wenn ich dann den Hochpunkt in der Mitte z.B. auf [mm] H_{1} [/mm] (0/5) und die anderen Hochpunkte auf (2/3) und (-2/3), dann müsste ich doch mit f'(x) = 0 setzen und so auf ein paar Gleichungen kommen mit denen ich dann die Koeffizienten rausfinden müsste oder?
Aber ich weiß gar nicht wie denn die Funktion aussehen könnte?
Woher weiß ich, ob das nun
f(x) = ax² + [mm] bx^{4} [/mm] ist oder f(x) = ax² + [mm] bx^{4} [/mm] + [mm] cx^{6} [/mm] oder irgendwie anders??

Oder wie soll ich sonst an die Aufgabe rangehen?

Schonmal Danke im Vorraus für jede Hilfe

lg
Vilinja



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Funktionsgleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 20.09.2006
Autor: M.Rex


> Wir sollen eine Funktion finden, die so aussieht wie die
> hier: (nur ne Skizze...)
>  [Dateianhang nicht öffentlich]
>  ...wie ein "Geist".
>  Ich hab mir überlegt, das Koordinatensystem in die Mitte
> zu legen, so dass das ganze dann symmetrisch zur y-Achse
> ist. Dann sind in der Funktion ja nur gerade Hochzahlen.
>  Wenn ich dann den Hochpunkt in der Mitte z.B. auf [mm]H_{1}[/mm]
> (0/5) und die anderen Hochpunkte auf (2/3) und (-2/3), dann
> müsste ich doch mit f'(x) = 0 setzen und so auf ein paar
> Gleichungen kommen mit denen ich dann die Koeffizienten
> rausfinden müsste oder?
>  Aber ich weiß gar nicht wie denn die Funktion aussehen
> könnte?
>  Woher weiß ich, ob das nun
> f(x) = ax² + [mm]bx^{4}[/mm] ist oder f(x) = ax² + [mm]bx^{4}[/mm] + [mm]cx^{6}[/mm]
> oder irgendwie anders??
>  
> Oder wie soll ich sonst an die Aufgabe rangehen?
>  
> Schonmal Danke im Vorraus für jede Hilfe
>  
> lg
>  Vilinja
>  

Hallo Vilinja

Die Idee, das ganze achsensymmetrisch zu machen, ist super.
Da sie aber 5 Extrempunkte hat (drei Hoch- und zwei Tiefp.) brauchst du eine 1. Ableitung mit 5 Nullstellen, das heisst, sie muss vom Grad Fünf sein.
Da die Ableitung aber einen Grad tiefer als die Ausgangsfunkttion ist, muss f(x) vom Grad sechs sein, also, wie du schon richtig vermutest
f(x) = ax² + [mm] bx^{4} [/mm] + [mm] cx^{6} [/mm] Leider fehlt noch ein d dabei.
Ein Tipp noch. Normalerweise fängt man mit den höchsten Exponenten an, also f(x) = [mm] ax^{6}+bx^{4}+cx²+d [/mm]

Jetzt brauchst du nur noch vier Konkrete Bedingungen, damit die Funktion eindeutig bestimmbar ist.

Marius


Bezug
                
Bezug
Funktionsgleichung aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mi 20.09.2006
Autor: Teufel

Hallo!

Aber mit 5 Extrempunkten könnte er 5 Gleichungen aufstellen und bräuchte dann 5 Variablen.

[mm] f(x)=ax^{8}+bx^{6}+cx{^4}+dx²+e [/mm]


Aber ich glaube nicht, dass damit schon sichergestellt wäre, dass die Funktion wie ein Geist aussieht. Man könnte noch sagen, dass der Hochpunkt in der Mitte z.B. bei H(0|6) liegt und die anderen Hochpunkte nur noch bei H(x|3), und die Tiefpunkte bei T(x|0) damit die Funktion also mal richtig bergab gehen muss und wieder bergauf. Dsamit hätte man aber wieder mehr Gleichungen und mehr Variablen zu beachten und viel mehr zu rechnen...


NEIN
Quatsch, mir ist ja eben etwas aufgefallen. 3 Extrempunkt würden reichen, da die Achsensymmetrie ja dafür sorgt, dass die auf beiden Seiten vorhanden sind! Aber noch Punkte angeben, durch die der Graf laufen soll, kann nicht schaden.

Bezug
                        
Bezug
Funktionsgleichung aufstellen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mi 20.09.2006
Autor: Karlchen

Ich mein man müsste ein Funktion 4. Grades nehmen und da der Graph ja symmetrisch zur x-Achse sein soll, würde die Funktion [mm] f(x)=ax^{4}+cx^{2}+e [/mm] lauten. Um die Koeffizienten herauszubekommen kann man sich dann 3 Punkte suchen, die auf dem Graphen liegen sollen, ich würde die Extrempunkte wählen und dann ganz normal per Additionsverfahren berechnen.

Bezug
                                
Bezug
Funktionsgleichung aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Mi 20.09.2006
Autor: Teufel

Wenn die Funktion 4. Grades wäre, könnte sie nicht insgesamt 5 Extremstellen haben. Abgeleitet wäre die Funktion nur noch Grad 3 und könnte damit nur 3 Extremstellen haben. Grad 6 ist mindestens erforderlich! Abgeleitet ist sie 5. Grades->5 Extremstellen.


Edit: Mit einer Funktion 6. Grades habe ich eben einen sehr guten Geist hinbekommen :)

[Dateianhang nicht öffentlich]

Aber keine Angst haben :D

Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
Bezug
        
Bezug
Funktionsgleichung aufstellen: noch 1 Bedingung erforderlich
Status: (Antwort) fertig Status 
Datum: 10:58 Do 21.09.2006
Autor: Loddar

Hallo Vilinja!


Dass es sich bei der dargestellten Form um eine Funktion (mind.) 6. Grades handeln muss, wurde ja geklärt.

Um aber nun auch noch eine eindeutige Lösung für $f(x) \ = \ [mm] a*x^6+b*x^4+c*x^2+d$ [/mm] bestimmen zu können, benötigen wir z.B. noch die Lage der beiden Tiefpunkte bzw. deren Funktionswerte, da wir erst 3 Bestimmungsgleichungen haben mit:

$f(0) \ = \ 5$

$f'(0) \ = \ 0$ (geht aber bereits aus der Symmetrie hervor, von daher keine neue Erkenntnis)

$f(2) \ = \ f(-2) \ = \ 3$

$f'(2) \ = \ f'(-2) \ = \ 0$


Gruß
Loddar


Bezug
        
Bezug
Funktionsgleichung aufstellen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Do 21.09.2006
Autor: Vilinja

Danke euch! Hab jetzt auch einen Geist :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de