www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Funktionsherleitung
Funktionsherleitung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsherleitung: Lösung
Status: (Frage) beantwortet Status 
Datum: 20:19 So 17.02.2008
Autor: Phil90

Aufgabe
An den Punkt P(4/2) soll eine Gerade so gelegt werden, dass das mit dem Koordinatenachsen gebildete Dreieck den kleinstmöglichen Flächeninhalt hat! Wie heißt die Gleichung der Geraden und wie groß ist der Flächeninhalt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  

Bitte helft mir! Ich kriege es einfach nicht hin!!! Diese Aufgabe haben wir über die Ferien aufbekommen und ich habe es einfach in den 2 Wochen nicht geschafft die richtige Lösung zu finden!



        
Bezug
Funktionsherleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 So 17.02.2008
Autor: steppenhahn

Du musst wahrscheinlich mit einer Unbekannten arbeiten (Mein Vorschlag: Die Steigung der Geraden in dem Punkt = m). Das m ist mindestens [mm] -\infty [/mm] (dann ist es eine Gerade nach oben) und höchstens 0 (Dann ist es eine horizontale Gerade)

Wie lautet die Gleichung der Geraden, wenn sie durch P(4|2) geht und die Steigung m hat?

Wir wissen: Die Gerade muss durch den Punkt P(4|2) gehen, das heißt wenn ich 4 einsetze muss 2 rauskommen. Wir setzen das in die typische Geradengleichung ein:

y = m*x+n
2 = m*4+n

--> 2-m*4 = n

--> Gesamte Geradengleichung in Abhängigkeit von m:

y = m*x + (2 - 4*m)

Aha!
Nun müssen wir und auf den Flächeninhalt des Dreiecks konzentrieren. Was ist die Höhe des Dreiecks? Das ist dort, wo die Gerade die Y-Achse schneidet: Der y-Achsenabschnitt. Was ist die Breite des Dreiecks: Die Nullstelle der Geraden.
Wir müssen nun sowohl Breite als auch Höhe mit m ausdrücken:

Bei der allgemeinen Geradengleichung, die wir oben in Abhängigkeit von m berechnet haben, wäre n dann der Schnittpunkt mit der y-Achse, d.h. wir haben schon mal die Höhe des entstehenden Dreiecks. Die Breite erhalten wir, wenn wir den x-Achsen-Abschnitt (Nullstelle) der Gerade herausbekommen.
Setze also Geradengleichung = 0.

0 = m*x + (2-4*m)
-2 = m*x -4*m
4*m - 2 = m*x
4 - [mm] \bruch{2}{m} [/mm] = x

D.h. die Breite des Dreiecks ist dann (4 - [mm] \bruch{2}{m}). [/mm] Die Allgemeine Flächenformel für ein Dreieck lautet: A = [mm] \bruch{Breite*Hoehe}{2}, [/mm] hier also:

A = (4 - [mm] \bruch{2}{m})*(2-4*m) [/mm]

Wir haben nun also eine Formel für den Flächeninhalt des Dreiecks in Abhängigkeit von m.
Diese Funktion musst du nun ableiten; Setze die Ableitung = 0 um Extremstellen herauszufinden (im Intervall [mm] [-\infty,0]). [/mm] Ein Minimum von A an einer bestimmten Stelle m bedeutet, dass der Flächeninhalt an dieser Stelle m minimal wird.

Bezug
                
Bezug
Funktionsherleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 So 17.02.2008
Autor: Phil90

Wow danke dir!!! Den Ansatz mit m hatte ich ebenfalls in Angriff genommen, jedoch hast du meine Lücke gefüllt! Die Sache mit dem x ist echt gut!

Aber eine Frage hab ich noch...bei der Formel für A, die du dann hingeschriben hast muss ich doch trotzdem alles durch 2 teilen oder??

Bezug
                        
Bezug
Funktionsherleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 So 17.02.2008
Autor: M.Rex


> Wow danke dir!!! Den Ansatz mit m hatte ich ebenfalls in
> Angriff genommen, jedoch hast du meine Lücke gefüllt! Die
> Sache mit dem x ist echt gut!
>  
> Aber eine Frage hab ich noch...bei der Formel für A, die du
> dann hingeschriben hast muss ich doch trotzdem alles durch
> 2 teilen oder??

Hallo

Yep, musst du.

Marius

Bezug
                                
Bezug
Funktionsherleitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 So 17.02.2008
Autor: Phil90

jetzt bin ich ja mal gespannt...m=-9,5...ist das richtig???

Bezug
                                        
Bezug
Funktionsherleitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 So 17.02.2008
Autor: steppenhahn

Nein, ich glaube nicht...

f(x) = [mm] \bruch{1}{2}*(4-\bruch{2}{x})*(2-4*x) [/mm]

     = [mm] (2-\bruch{1}{x})*(2-4*x) [/mm]

     = 4 - 8*x - [mm] \bruch{2}{x} [/mm] + 4

     = 8 - 8*x - [mm] \bruch{2}{x} [/mm]

Nun ableiten:

f'(x) = -8 + [mm] \bruch{2}{x^{2}} [/mm]

Extremstellen:

   0 = -8 + [mm] \bruch{2}{x^{2}} [/mm]

[mm] \gdw [/mm] 8 = [mm] \bruch{2}{x^{2}} [/mm]

[mm] \gdw [/mm] 4 = [mm] \bruch{1}{x^{2}} [/mm]

[mm] \gdw 4*x^2 [/mm] = 1

[mm] \gdw x_{1} [/mm] = [mm] -\bruch{1}{2}, x_{2} [/mm] = [mm] \bruch{1}{2} [/mm]

Da x [mm] \in (\infty,0) [/mm] sein soll, kommt nur [mm] x_{1} [/mm] in Frage.

Was hast du anders gemacht :-) ?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de