www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktionssynthese
Funktionssynthese < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionssynthese: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Di 21.04.2009
Autor: MatheOpfer

Aufgabe
Bestimmen Sie den Funktionsterm der Funktion 3. Grades, deren Graph durch die Punkte A(1/0), B(3/1[mm] \bruch{2}{3} [/mm]), C(0/ [mm] - \bruch{1}{3} [/mm] ) und D(-1/-3) verläuft und beschreiben sie den Verlauf des Graphen der Funktion.

Hallo,
diese Aufgabe gehört zu einer HA aus meinem Mathebuch. Das Buch schlägt als Lösung f(x)=[mm] \bruch{1}{3} [/mm][mm] x^2-[/mm] [mm] \bruch{7}{6} [/mm][mm] x^2+[/mm] [mm] \bruch{7}{6} [/mm]x-[mm] \bruch{1}{3} [/mm]  vor.
  Meine Probleme sind folgende:
1.:Ich weiß zwar, dass ich hier das Gauß'sche  Algorithmus-Verfahren anwenden muss, was ich auch schon getan habe, aber ich komme auf völlig andere Ergebnisse.
2.:Die Berechnung der Nullstellen, die ich für den zweiten Teil der Aufgabe
brauche, gelingt mir(vielleicht wegen der Falschen Ergebnisse) ebenfalls nicht.
Könnte mir jemand vielleicht vorlegen, wie ich auf das Ergebnis komme?
Vielen Dank im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Funktionssynthese: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 21.04.2009
Autor: angela.h.b.


> Bestimmen Sie den Funktionsterm der Funktion 3. Grades,
> deren Graph durch die Punkte A(1/0), B(3/1[mm] \bruch{2}{3} [/mm]),
> C(0/ [mm]- \bruch{1}{3}[/mm] ) und D(-1/-3) verläuft und beschreiben
> sie den Verlauf des Graphen der Funktion.
>  Hallo,
>  diese Aufgabe gehört zu einer HA aus meinem Mathebuch. Das
> Buch schlägt als Lösung f(x)=[mm] \bruch{1}{3}[/mm][mm] x^{\red{3}}-[/mm]
> [mm]\bruch{7}{6}[/mm][mm] x^2+[/mm] [mm]\bruch{7}{6} [/mm]x-[mm] \bruch{1}{3}[/mm]  vor.
>    Meine Probleme sind folgende:
>  1.:Ich weiß zwar, dass ich hier das Gauß'sche  
> Algorithmus-Verfahren anwenden muss, was ich auch schon
> getan habe, aber ich komme auf völlig andere Ergebnisse.
>  2.:Die Berechnung der Nullstellen, die ich für den zweiten
> Teil der Aufgabe
>  brauche, gelingt mir(vielleicht wegen der Falschen
> Ergebnisse) ebenfalls nicht.
>  Könnte mir jemand vielleicht vorlegen, wie ich auf das
> Ergebnis komme?

Hallo,

[willkommenmr].

"Vorlegen" tun wir hier normalerweise nichts, aber wir helfen gern.

Ansetzen würde man hier ja [mm] f(x)=ax^3+bx^2+cx+d, [/mm]

der Punkt D zum Beispiel  liefert die Gleichung

[mm] -3=a*(-1)^3+b*(-1)^2+c*(-1)+d=-a+b-c+d, [/mm]

entsprechend für die anderen drei Punkte.

Man erhält, wie Du richtig sagst, ein LGS, welches man mit irgendeiner der Mehtoden, die man kann, löst.

Rechne am besten mal vor, was Du getan hast, sonst kann man Deinen Fehler ja nicht finden.


Zu den  Nullstellen:

es ist also  f(x)=[mm] \bruch{1}{3}[/mm][mm] x^3-[/mm]  [mm]\bruch{7}{6}[/mm][mm] x^2+[/mm] [mm]\bruch{7}{6} [/mm]x-[mm] \bruch{1}{3}[/mm] .

Eine Nullstelle kennst Du bereits: den Punkt A.

Klammere aus f(x) nun den Linearfaktor (x-1) aus. (Polynomdivision)

Du hast dann f(x)=(x-1)* quadratisches.Polynom.

Nun bestimme die Nullstellen des quadratischen Polynoms.

Gruß v. Angela



Bezug
                
Bezug
Funktionssynthese: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 21.04.2009
Autor: MatheOpfer

Hey vielen Dank für die schnelle Antwort!
>Rechne am besten mal vor, was Du getan hast, sonst kann man Deinen >Fehler ja nicht finden.
Also bei mir sieht das so aus:
A(1/0) [mm] \Rightarrow 0=a_3\*1^3+a_2\*1^2+a_1\*1+a_0 [/mm]
[mm] B(3/1\bruch{2}{3}) \Rightarrow 1\bruch{2}{3}=a_3\*3^3+a_2\*3^2+a_1\*3+a_0 [/mm]
[mm] C(0/-\bruch{1}{3}) \Rightarrow -\bruch{1}{3}=a_3\*0+a_2\*0+a_1\*0+a_0 \Rightarrow a_0=-\bruch{1}{3} [/mm]
D(-1/-3) [mm] \Rightarrow -3=a_3\*(-1)^3+a_2\*(-1)^2+a_1\*(-1)+a_0 [/mm]

I [mm] -\bruch{1}{3}=a_3+a_2+a_1 [/mm]
II [mm] 1\bruch{1}{3}=27a_3+9a_2+3a_1 [/mm]
III [mm] -3\bruch{1}{3}=-a_3+a_2-a_1 [/mm]


[mm] a_1 a_2 a_3 [/mm]

1         1       1       /   [mm] -\bruch{1}{3}-----+ /\*3---+ [/mm]
3         9      27      /   [mm] 1\bruch{1}{3} [/mm]      !+      < --!-
-1         1      -1      /   [mm] -3\bruch{1}{3} [/mm]   <-
--------------------------------------------------
1         1       1       /   [mm] -\bruch{1}{3} [/mm]
0         6       24     /   [mm] \bruch{1}{3} [/mm]
0         2       0       /    [mm] -3\bruch{2}{3} [/mm]
--------------------------------------------------
1         1       1       /    [mm] -\bruch{1}{3} [/mm]
0         0       18     /    [mm] -1\bruch{2}{3} [/mm]
0         2        0      /    [mm] -3\bruch{2}{3} [/mm]



[mm] a_3=-1\bruch{2}{3} [/mm]
[mm] a_2=-3\bruch{2}{3} [/mm]
[mm] a_1=3\bruch{2}{3}+1\bruch{2}{3}+\bruch{1}{3} [/mm]
[mm] a_1=\bruch{17}{3} [/mm]


[mm] f(x)=-1\bruch{2}{3}x^3-3\bruch{2}{3}x^2+5\bruch{2}{3}x [/mm]


Mir sind jetzt beim abschreiben selbst ein paar Fehler aufgefallen(hehe...)
Ich bin dennoch für jede Korrektur dankbar!




Bezug
                        
Bezug
Funktionssynthese: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 21.04.2009
Autor: angela.h.b.


> Hey vielen Dank für die schnelle Antwort!
>  >Rechne am besten mal vor, was Du getan hast, sonst kann
> man Deinen >Fehler ja nicht finden.
>  Also bei mir sieht das so aus:
>  A(1/0) [mm]\Rightarrow 0=a_3\*1^3+a_2\*1^2+a_1\*1+a_0[/mm]
>  
> [mm]B(3/1\bruch{2}{3}) \Rightarrow 1\bruch{2}{3}=a_3\*3^3+a_2\*3^2+a_1\*3+a_0[/mm]
>  
> [mm]C(0/-\bruch{1}{3}) \Rightarrow -\bruch{1}{3}=a_3\*0+a_2\*0+a_1\*0+a_0 \Rightarrow a_0=-\bruch{1}{3}[/mm]
>  
> D(-1/-3) [mm]\Rightarrow -3=a_3\*(-1)^3+a_2\*(-1)^2+a_1\*(-1)+a_0[/mm]
>  
> I [mm]-\bruch{1}{3}=a_3+a_2+a_1[/mm]

Hallo,

hier sehe ich schon gleich einen Fehler. Wenn [mm] a_0=-\bruch{1}{3}, [/mm] dann muß doch hier links [mm] -(-\bruch{1}{3})= \bruch{1}{3} [/mm] stehen.

Dieser Fehler zieht sich natürlich weiter durch. das, was Du ansonsten tust, sieht vom Prinzip her zunächst richtig aus.


>  II [mm]1\bruch{1}{3}=27a_3+9a_2+3a_1[/mm]
>  III [mm]-3\bruch{1}{3}=-a_3+a_2-a_1[/mm]
>  
>
> [mm]a_1 a_2 a_3[/mm]
>  
> 1         1       1       /   [mm]-\bruch{1}{3}-----+ /\*3---+[/mm]
>  
>  3         9      27      /   [mm]1\bruch{1}{3}[/mm]      !+      <
> --!-
> -1         1      -1      /   [mm]-3\bruch{1}{3}[/mm]   <-
>  --------------------------------------------------
>   1         1       1       /   [mm]-\bruch{1}{3}[/mm]
>   0         6       24     /   [mm]\bruch{1}{3}[/mm]
>   0         2       0       /    [mm]-3\bruch{2}{3}[/mm]
>  --------------------------------------------------
>   1         1       1       /    [mm]-\bruch{1}{3}[/mm]
>   0         0       18     /    [mm]-1\bruch{2}{3}[/mm]
>   0         2        0      /    [mm]-3\bruch{2}{3}[/mm]


Lassen wir jetzt mal den Fehler, der natürlich Folgen hat, außen vor.

Mit ist nicht klar, wie Du jetzt  zu den unten angegebenen [mm] a_3,a_2, a_1 [/mm] kommst.

Der letzten Zeile bespielsweise würde ich entnehmen: [mm] 2x_2=-3\bruch{2}{3} [/mm]  ==> [mm] x_2= -\bruch{11}{6}. [/mm]



>  
>
>
> [mm]a_3=-1\bruch{2}{3}[/mm]
>  [mm]a_2=-3\bruch{2}{3}[/mm]
>  [mm]a_1=3\bruch{2}{3}+1\bruch{2}{3}+\bruch{1}{3}[/mm]
>  [mm]a_1=\bruch{17}{3}[/mm]
>  
>
> [mm]f(x)=-1\bruch{2}{3}x^3-3\bruch{2}{3}x^2+5\bruch{2}{3}x[/mm]

Hier frage ich mich nun - alle anderen Fehler vernachlässigend -, wo das [mm] a_0 [/mm] geblieben ist.

Geh's nochmal langsam an, ich denke, Du schaffst das.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de