www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Galois-Gruppe von ZFK
Galois-Gruppe von ZFK < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galois-Gruppe von ZFK: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Mi 23.06.2010
Autor: sTuDi_iDuTs

Hallo zusammen,
in vielen Büchern wie gefolgert, dass die Galois-Gruppe [mm] Gal(\IQ(\zeta):\IQ) [/mm] zur multiplikativen Gruppe [mm] (\IZ/n\IZ) [/mm] isomorph ist.
Leider finde ich in keinem Buch einen Beweis dafür und selbst komm ich leider auch nicht auf einen grünen Zweig...
Vielleicht kann mir jemand einen Beweis/Beweisidee liefern?!?
Danke!

        
Bezug
Galois-Gruppe von ZFK: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mi 23.06.2010
Autor: felixf

Moin!

> Hallo zusammen,
>  in vielen Büchern wie gefolgert, dass die Galois-Gruppe
> [mm]Gal(\IQ(\zeta):\IQ)[/mm] zur multiplikativen Gruppe [mm](\IZ/n\IZ)[/mm]
> isomorph ist.

Hier ist [mm] $\zeta$ [/mm] eine $n$-te primitive Einheitswurzel.

>  Leider finde ich in keinem Buch einen Beweis dafür und
> selbst komm ich leider auch nicht auf einen grünen
> Zweig...
>  Vielleicht kann mir jemand einen Beweis/Beweisidee
> liefern?!?

Das koennte dir weiterhelfen:

Nun, das Minimalpolynom von [mm] $\zeta$ [/mm] hat genau die $n$-ten primitiven Einheitswurzeln als Nullstellen. Und diese haben in der (zyklischen) Gruppe der $n$-ten Einheitswurzeln die gleiche Stellung wie die Einheiten in [mm] $\IZ/n\IZ$. [/mm]

LG Felix


Bezug
                
Bezug
Galois-Gruppe von ZFK: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Do 24.06.2010
Autor: sTuDi_iDuTs

Aber warum nur zur multiplikativen Gruppe?
Was heißt "gleiche Stellung"?

Bezug
                        
Bezug
Galois-Gruppe von ZFK: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Do 24.06.2010
Autor: felixf

Hallo!

> Aber warum nur zur multiplikativen Gruppe?
>  Was heißt "gleiche Stellung"?

Wenn [mm] $\mu_n$ [/mm] die Gruppe der $n$-ten Einheitswurzeln (in [mm] $\IC$) [/mm] ist, dann hast du einen Isomorphismus [mm] $\IZ/n\IZ \to \mu_n$. [/mm] Die primitiven Einheitswurzeln sind gerade die von Ordnung $n$, womit sie in [mm] $\IZ/n\IZ$ [/mm] (aufgefasst als additive Gruppe!) den Elementen der Ordnung $n$ entsprechen -- und das sind gerade die Restklassen, welche zu $n$ teilerfremd sind. Diese wiederum sind gerade die Einheiten des Ringes [mm] $\IZ/n\IZ$. [/mm] Der Isomorphismus [mm] $\IZ/n\IZ \to \mu_n$ [/mm] ist uebrigens durch $m + [mm] n\IZ \mapsto \zeta^m$ [/mm] gegeben, wobei [mm] $\zeta$ [/mm] eine fest gewaehlte $n$-te Einheitswurzel ist.

Damit hast du eine Korrespondenz zwischen den Einheiten von [mm] $\IZ/n\IZ$ [/mm] und den primitiven $n$-ten Einheitswurzeln, welche gleichzeitig alle Nullstellen des Minimalpolynoms $f$ von [mm] $\zeta$ [/mm] sind. Nennen wir die Menge der primitiven $n$-ten Einheitswurzeln $N$. Dann ist $N = [mm] \{ \zeta^m \mid m + n\IZ \in (\IZ/n\IZ)^\ast \}$, [/mm] du hast also eine Bijektion [mm] $(\IZ/n\IZ)^\ast \to [/mm] N$, $m + [mm] n\IZ \mapsto \zeta^m$. [/mm]

Dann hast du eine Bijektion [mm] $\Psi [/mm] : N [mm] \to \Aut(\IQ(\zeta) [/mm] / [mm] \IQ)$, [/mm] wobei [mm] $\zeta' \in [/mm] N$ zu eiem Automorphismus [mm] $\varphi [/mm] : [mm] \IQ(\zeta) \to \IQ(\zeta)$ [/mm] mit [mm] $\varphi(\zeta) [/mm] = [mm] \zeta'$ [/mm] korrespondiert.

Jetzt ueberlege dir, dass die Abbildung [mm] $(\IZ/n\IZ)^\ast \to \Aut(\IQ(\zeta) [/mm] / [mm] \IQ)$, [/mm] $m + [mm] n\IZ \mapsto \Psi(\zeta^m)$ [/mm] nicht nur eine Bijektion, sondern auch ein Homomorphismus von Gruppen ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de