www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Galoisgruppe
Galoisgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Mo 28.01.2013
Autor: kullinarisch

Aufgabe
Bestimme die Galoisgruppe von [mm] L=\IQ(e^{\bruch{i2\pi}{5}}). [/mm]


Hallo! Als ich dachte dass ich fertig bin, ist mir noch eine Frage aufgekommen.

Zunächst hatte ich raus:

Das Minimalpolynom von [mm] \omega=e^\bruch{i2\pi}{5} [/mm] ist f(x)= [mm] x^4+x^3+x^2+x+1 [/mm] und damit ist [mm] [L:\IQ]=|Gal(f)|=4. [/mm] Die Nullstellen von f sind [mm] \{\omega, \omega^2,\omega^3,\omega^4\} [/mm]

Da Gal(f) ja transitiv auf den Nullstellen von f operiert, gibt es ein [mm] \sigma \in \Gal(f) [/mm] mit [mm] \sigma(\omega)=\omega^2 [/mm] und dadurch sind alle weiteren bilder schon klar:

[mm] \sigma(\omega)=\omega^2 [/mm]
[mm] \sigma(\omega^2)=\sigma(\omega)^2=(\omega^2)^2=\omega^4 [/mm]
[mm] \sigma(\omega^3)=\sigma(\omega)^3=(\omega^2)^3=\omega^6=\omega [/mm]
[mm] \sigma(\omega^4)=(\sigma(\omega)^4=(\omega^2)^4=\omega^8=\omega^3 [/mm]

Also kann man [mm] \sigma [/mm] als 4- Zyklus schreiben: [mm] \sigma=(\omega, \omega^2,\omega^4, \omega^3) [/mm]

Da [mm] ord(\sigma)=4 [/mm] sollte doch dann wegen |Gal(f)|=4 gelten: [mm] Gal(f)=\{Id,\sigma, \sigma^2,\sigma^3\} [/mm]

Jetzt die Frage:

Was ist mit der komplexen Konjugation? Müsste die nicht auch ein Element aus Gal(f) sein? Wenn ich mich nicht verrechnet habe, kann es kein Produkt von [mm] \sigma [/mm] sein. Einerseits hat Gal(f) nur 4 Elemente und diese 4, die ich aufgelistet habe, müssen auf jeden Fall in der Galoisgruppe sein. Andererseits ist die komplexe Konjugation doch auch auf jeden Fall auch ein Element aus Gal(f).

Hoffentlich kann das jmd aufklären!

Grüße, kullinarisch

        
Bezug
Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Di 29.01.2013
Autor: hippias

Einer Deiner Automorphismen ist die Einschraenkung der Konjugation auf $L$.

Bezug
                
Bezug
Galoisgruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Di 29.01.2013
Autor: kullinarisch

Ok. Dann bin ich beruhigt, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de