www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Galoistheorie
Galoistheorie < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoistheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Sa 19.01.2013
Autor: kullinarisch

Hallo zusammen. Bevor ich meine Frage formuliere, erstmal das Problem:

Sei f ein Polynom aus [mm] \IQ[x] [/mm] und [mm] a_1,..., a_n [/mm] die Nullstellen über [mm] \IC. [/mm] Ich betrachte jetzt den Zerfällungskörper von f, gegeben durch


[mm] \IQ(a_1,...,a_n)=:L [/mm]

Nun gilt ja: für alle g aus [mm] Gal(L/\IQ) [/mm] ist auch [mm] g(a_i) [/mm] eine Nullstelle von f. [mm] (1\le i\le [/mm] n)

Jetzt betrachte ich ein weiteres Polynom h aus [mm] \IQ[x] [/mm] und es soll gelten, dass h über L in Linearfaktoren zerfällt. Seien [mm] b_1,..,b_k [/mm] die Nullstellen in L. Aber es soll NICHT unbedingt gelten [mm] L=\IQ(b_1,...,b_k), [/mm] sondern lediglich [mm] \IQ(b_1,...,b_k)\subset [/mm] L.

Jetzt meine Frage, die mich ohne Ende wurmt:

Ist dann für jedes g aus [mm] Gal(L/\IQ) [/mm] auch [mm] g(b_j) [/mm] eine Nullstelle von h? [mm] (1\le j\le [/mm] k) Anscheinend ist es ja so, aber warum?

Ich bedanke mich schon mal :)
Mfg, kulli



        
Bezug
Galoistheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Sa 19.01.2013
Autor: felixf

Moin kulli!

> Hallo zusammen. Bevor ich meine Frage formuliere, erstmal
> das Problem:
>  
> Sei f ein Polynom aus [mm]\IQ[x][/mm] und [mm]a_1,..., a_n[/mm] die
> Nullstellen über [mm]\IC.[/mm] Ich betrachte jetzt den
> Zerfällungskörper von f, gegeben durch
>
>
> [mm]\IQ(a_1,...,a_n)=:L[/mm]
>
> Nun gilt ja: für alle g aus [mm]Gal(L/\IQ)[/mm] ist auch [mm]g(a_i)[/mm]
> eine Nullstelle von f. [mm](1\le i\le[/mm] n)

Genau. Weisst du, wie man das beweist?

> Jetzt betrachte ich ein weiteres Polynom h aus [mm]\IQ[x][/mm] und
> es soll gelten, dass h über L in Linearfaktoren zerfällt.
> Seien [mm]b_1,..,b_k[/mm] die Nullstellen in L. Aber es soll NICHT
> unbedingt gelten [mm]L=\IQ(b_1,...,b_k),[/mm] sondern lediglich
> [mm]\IQ(b_1,...,b_k)\subset[/mm] L.
>  
> Jetzt meine Frage, die mich ohne Ende wurmt:
>  
> Ist dann für jedes g aus [mm]Gal(L/\IQ)[/mm] auch [mm]g(b_j)[/mm] eine
> Nullstelle von h? [mm](1\le j\le[/mm] k) Anscheinend ist es ja so,
> aber warum?

Ja, das ist so. Und es ist aus genau dem gleichen Grund so, warum es fuer $f$ oben selber gilt: weil $g$ alle Elemente aus [mm] $\IQ$, [/mm] und somit alle Koeffizienten von $h$ festhaelt. Deswegen gilt [mm] $h(g(b_j)) [/mm] = [mm] g(h(b_j)) [/mm] = g(0) = 0$.

LG Felix


Bezug
                
Bezug
Galoistheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Sa 19.01.2013
Autor: kullinarisch


> Moin kulli!
> > Hallo zusammen. Bevor ich meine Frage formuliere, erstmal
> > das Problem:
>  >  
> > Sei f ein Polynom aus [mm]\IQ[x][/mm] und [mm]a_1,..., a_n[/mm] die
> > Nullstellen über [mm]\IC.[/mm] Ich betrachte jetzt den
> > Zerfällungskörper von f, gegeben durch
> >
> >
> > [mm]\IQ(a_1,...,a_n)=:L[/mm]
> >
> > Nun gilt ja: für alle g aus [mm]Gal(L/\IQ)[/mm] ist auch [mm]g(a_i)[/mm]
> > eine Nullstelle von f. [mm](1\le i\le[/mm] n)
>  
> Genau. Weisst du, wie man das beweist?

Im Prinzip doch genau so, wie du es unten gemacht hast, oder?

> > Jetzt betrachte ich ein weiteres Polynom h aus [mm]\IQ[x][/mm] und
> > es soll gelten, dass h über L in Linearfaktoren zerfällt.
> > Seien [mm]b_1,..,b_k[/mm] die Nullstellen in L. Aber es soll NICHT
> > unbedingt gelten [mm]L=\IQ(b_1,...,b_k),[/mm] sondern lediglich
> > [mm]\IQ(b_1,...,b_k)\subset[/mm] L.
>  >  
> > Jetzt meine Frage, die mich ohne Ende wurmt:
>  >  
> > Ist dann für jedes g aus [mm]Gal(L/\IQ)[/mm] auch [mm]g(b_j)[/mm] eine
> > Nullstelle von h? [mm](1\le j\le[/mm] k) Anscheinend ist es ja so,
> > aber warum?
>
> Ja, das ist so. Und es ist aus genau dem gleichen Grund so,
> warum es fuer [mm]f[/mm] oben selber gilt: weil [mm]g[/mm] alle Elemente aus
> [mm]\IQ[/mm], und somit alle Koeffizienten von [mm]h[/mm] festhaelt. Deswegen
> gilt [mm]h(g(b_j)) = g(h(b_j)) = g(0) = 0[/mm].

ohje.. natürlich :) ich danke dir!!!

> LG Felix
>  


Bezug
                        
Bezug
Galoistheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Sa 19.01.2013
Autor: felixf

Moin!

> > > Nun gilt ja: für alle g aus [mm]Gal(L/\IQ)[/mm] ist auch [mm]g(a_i)[/mm]
> > > eine Nullstelle von f. [mm](1\le i\le[/mm] n)
>  >  
> > Genau. Weisst du, wie man das beweist?
>  
> Im Prinzip doch genau so, wie du es unten gemacht hast,
> oder?

Ja :)

> > > Jetzt betrachte ich ein weiteres Polynom h aus [mm]\IQ[x][/mm] und
> > > es soll gelten, dass h über L in Linearfaktoren zerfällt.
> > > Seien [mm]b_1,..,b_k[/mm] die Nullstellen in L. Aber es soll NICHT
> > > unbedingt gelten [mm]L=\IQ(b_1,...,b_k),[/mm] sondern lediglich
> > > [mm]\IQ(b_1,...,b_k)\subset[/mm] L.
>  >  >  
> > > Jetzt meine Frage, die mich ohne Ende wurmt:
>  >  >  
> > > Ist dann für jedes g aus [mm]Gal(L/\IQ)[/mm] auch [mm]g(b_j)[/mm] eine
> > > Nullstelle von h? [mm](1\le j\le[/mm] k) Anscheinend ist es ja so,
> > > aber warum?
> >
> > Ja, das ist so. Und es ist aus genau dem gleichen Grund so,
> > warum es fuer [mm]f[/mm] oben selber gilt: weil [mm]g[/mm] alle Elemente aus
> > [mm]\IQ[/mm], und somit alle Koeffizienten von [mm]h[/mm] festhaelt. Deswegen
> > gilt [mm]h(g(b_j)) = g(h(b_j)) = g(0) = 0[/mm].
>  
> ohje.. natürlich :) ich danke dir!!!

Bitte!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de