Ganzheit von Ringen und Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:14 Di 29.11.2011 | Autor: | Vilietha |
Aufgabe | Sei [mm] B:=\IC[x,y,t]/(t*x-y) [/mm] und [mm] A:=\IC[x,y] \subseteq [/mm] B. Sei [mm] p:=Ax+Ay\subseteq [/mm] A. Zeigen Sie dass es Primideale q' [mm] \subseteq [/mm] q [mm] \subset [/mm] B gibt mit [mm] q\cap [/mm] A = [mm] p=q'\cap [/mm] A. Ist B ganz über A? |
Hallo zusammen,
bisher habe ich noch keinen Ansatz.
Ich freue mich über jede Hilfe.
Viele Grüße,
Vielitha
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:45 Do 01.12.2011 | Autor: | felixf |
Moin Vielitha!
> Sei [mm]B:=\IC[x,y,t]/(t*x-y)[/mm] und [mm]A:=\IC[x,y] \subseteq[/mm] B. Sei
> [mm]p:=Ax+Ay\subseteq[/mm] A. Zeigen Sie dass es Primideale q'
> [mm]\subseteq[/mm] q [mm]\subset[/mm] B gibt mit [mm]q\cap[/mm] A = [mm]p=q'\cap[/mm] A. Ist B
> ganz über A?
>
> bisher habe ich noch keinen Ansatz.
Also, die Restklasse von $t$ in $B$ verhaelt sich ja wie [mm] $\frac{y}{x}$. [/mm] Damit solltest du die Frage, ob $B$ ueber $A$ ganz ist, beantworten koennen.
Zu den Primidealen: soll wirklich $q' [mm] \subseteq [/mm] q$ gelten? Dann kannst du doch einfach $q = q'$ waehlen
Die Ideale in $B$ entsprechen doch den Idealen $I$ in [mm] $\IC[x, [/mm] y, t]$ mit $(t x - y) [mm] \subseteq [/mm] I$, indem du $I [mm] \subseteq \IC[x, [/mm] y, t]$ auf $I/(tx-y) [mm] \subseteq [/mm] B$ abbildest. Dabei ist $I/(tx-y)$ prim genau dann, wenn $I$ prim ist. (Das ist alles die Idealkorrespondenz, wird auch teilweise zusammen mit dem Homomorphiesatz gezeigt.)
Dies sollte dir schonmal helfen, passende Kandidaten zu finden. Weiterhin hast du ja noch die Bedingung, dass $I/(tx-y)$ geschnitten mit [mm] $\IC[x, [/mm] y]$ gleich $(x,y)$ sein muss, und somit insbesondere $x$ und $y$ enthaelt. Damit muss auch $I$ selber $x$ und $y$ enthalten.
Dies schraenkt die Anzahl der Moeglichkeiten fuer $q$ und $q'$ stark ein. Wenn du $I/(x, y) [mm] \subseteq \IC[x,y,t]/(x, [/mm] y) [mm] \cong \IC[/mm] [t]$ betrachtest, muss $I/(x, y)$ also ein Primideal in einem Polynomring ueber einem Koerper in einer Unbestimmten sein; da bleiben nicht viele Moeglichkeiten uebrig.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:50 Do 01.12.2011 | Autor: | Vilietha |
Hallo Felix,
herzlichen Dank für Deine ausführliche Antwort!
Ich hoffe, dass ich die Aufgabe mit den vielen Tipps nun lösen werde können.
Viele Grüße,
Vilietha
|
|
|
|