www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ganzheit von Ringen und Ideale
Ganzheit von Ringen und Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzheit von Ringen und Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Di 29.11.2011
Autor: Vilietha

Aufgabe
Sei [mm] B:=\IC[x,y,t]/(t*x-y) [/mm] und [mm] A:=\IC[x,y] \subseteq [/mm] B. Sei [mm] p:=Ax+Ay\subseteq [/mm] A. Zeigen Sie dass es Primideale q' [mm] \subseteq [/mm] q [mm] \subset [/mm] B gibt mit [mm] q\cap [/mm] A = [mm] p=q'\cap [/mm] A. Ist B ganz über A?

Hallo zusammen,

bisher habe ich noch keinen Ansatz.

Ich freue mich über jede Hilfe.

Viele Grüße,
Vielitha

        
Bezug
Ganzheit von Ringen und Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Do 01.12.2011
Autor: felixf

Moin Vielitha!

> Sei [mm]B:=\IC[x,y,t]/(t*x-y)[/mm] und [mm]A:=\IC[x,y] \subseteq[/mm] B. Sei
> [mm]p:=Ax+Ay\subseteq[/mm] A. Zeigen Sie dass es Primideale q'
> [mm]\subseteq[/mm] q [mm]\subset[/mm] B gibt mit [mm]q\cap[/mm] A = [mm]p=q'\cap[/mm] A. Ist B
> ganz über A?
>
> bisher habe ich noch keinen Ansatz.

Also, die Restklasse von $t$ in $B$ verhaelt sich ja wie [mm] $\frac{y}{x}$. [/mm] Damit solltest du die Frage, ob $B$ ueber $A$ ganz ist, beantworten koennen.

Zu den Primidealen: soll wirklich $q' [mm] \subseteq [/mm] q$ gelten? Dann kannst du doch einfach $q = q'$ waehlen ;-)

Die Ideale in $B$ entsprechen doch den Idealen $I$ in [mm] $\IC[x, [/mm] y, t]$ mit $(t x - y) [mm] \subseteq [/mm] I$, indem du $I [mm] \subseteq \IC[x, [/mm] y, t]$ auf $I/(tx-y) [mm] \subseteq [/mm] B$ abbildest. Dabei ist $I/(tx-y)$ prim genau dann, wenn $I$ prim ist. (Das ist alles die Idealkorrespondenz, wird auch teilweise zusammen mit dem Homomorphiesatz gezeigt.)

Dies sollte dir schonmal helfen, passende Kandidaten zu finden. Weiterhin hast du ja noch die Bedingung, dass $I/(tx-y)$ geschnitten mit [mm] $\IC[x, [/mm] y]$ gleich $(x,y)$ sein muss, und somit insbesondere $x$ und $y$ enthaelt. Damit muss auch $I$ selber $x$ und $y$ enthalten.

Dies schraenkt die Anzahl der Moeglichkeiten fuer $q$ und $q'$ stark ein. Wenn du $I/(x, y) [mm] \subseteq \IC[x,y,t]/(x, [/mm] y) [mm] \cong \IC[/mm] [t]$ betrachtest, muss $I/(x, y)$ also ein Primideal in einem Polynomring ueber einem Koerper in einer Unbestimmten sein; da bleiben nicht viele Moeglichkeiten uebrig.

LG Felix


Bezug
                
Bezug
Ganzheit von Ringen und Ideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Do 01.12.2011
Autor: Vilietha

Hallo Felix,

herzlichen Dank für Deine ausführliche Antwort! :-)

Ich hoffe, dass ich die Aufgabe mit den vielen Tipps nun lösen werde können.

Viele Grüße,
Vilietha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de