www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Derive" - Gauß'sche Zahlenebene
Gauß'sche Zahlenebene < Derive < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß'sche Zahlenebene: Funktion darstellen
Status: (Frage) beantwortet Status 
Datum: 18:51 Di 25.03.2008
Autor: Jujutsuclaudi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

also ich bin grade dabei Derive zu erlernen und wollte es schon mal für ne Matheaufgabe nutzen:
Hier sollte ich t--> it+sint auf der Gauß'schem Zahlenebene abbilden.
Ich weiß auch wie das aussieht, aber derive hat irgendwie etwas völlig anderes dargestellt...Ich hab zwar bei optionen plot real und imaginärteil eingestellt, aber der trennt die funktion dann in 2 graphen auf...
und naja ich hab ka wie ich das änderen kann

danke schonmal

        
Bezug
Gauß'sche Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 25.03.2008
Autor: Event_Horizon

Hallo!

Ich kenne keinen Weg, eine komplexe Funktion direkt plotten zu lassen. Du kannst aber in Derive Ortskurven zeichnen lassen:

[x-Werte,y-Werte]

Darein nun

[RE(f(x)), IM(f(x))]

Du weist den Realteil also der x-Richtung zu , und den Imaginärteil der y-Richtung.

Dieses Objekt kannst du nun plotten!  Falls nicht, irgendwo in den Menüs im Plot-Modus gibt' ne option "Ausdruck Vereinfachen". Diesen mußt du aktivieren.

Bezug
                
Bezug
Gauß'sche Zahlenebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Di 25.03.2008
Autor: Jujutsuclaudi

Ok gut,

aber wenn cih das jetzt zeichenen lassen will, kommt ne grade auf der X-Achse.. also irgendwas stimmt noch net.
Frage: um die Funktion als Ortskruve darstellen zu lassen, was muß ich da genau machen?

Danke schonmal

Bezug
                        
Bezug
Gauß'sche Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Di 25.03.2008
Autor: Event_Horizon

Naja, genau das, was ich gesagt habe:

f(x) := î·t + SIN(t)

[RE(f(x)), IM(f(x))]


Und dann den letzten Ausdruck zeichnen lassen. er fragt dich vorher noch, von wo bis wo das x gehen soll.

Natürlich kannst du es dir einfacher machen, denn Real- und Imaginärteil sind hier ja kein Problem:

[SIN(t), t]


Herauskommen sollte eine Sinusfunktion um die imaginäre Achse.

Bezug
                                
Bezug
Gauß'sche Zahlenebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Di 25.03.2008
Autor: Jujutsuclaudi

ja ok,

es hat soweit geklappt^^ wobei ich mich noch etwas damit beschäftigen werden muß, bis ich sicher mit Derive bin

Aber Danke :-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de