www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gauß'scher Berg
Gauß'scher Berg < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß'scher Berg: Anspruchsvolle Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 12.06.2007
Autor: Max80

Aufgabe
Man betrachte den Gauß'schen Berg:

[mm] f(x,y)=e^{-(x^2+y^2)} [/mm] für x,y [mm] \in \IR [/mm]

[]Berg

Jemand wandert auf diesem Berg entlang seines Weges x*y=4; x>0. Bei welchen Koordinaten (x- und y-Wert) wird jemand den höchsten Punkt erreichen?

Any ideas? =)

Also ich habe mir folgende Gedanken gemacht:

Gegeben ist die Funktion zum Berg und auch andere zusätzliche Informationen. Nun Frage ich mich doch als erstes: was ist überhaupt die aufgabe? ich vermute mal hier gehts um die spitze des berges? also im prinzip um den extrem punkt der funktion?
da war meine idee: die gauß-funktion ableiten und die extrem-stellen berechnen. nur wofür dann die anderen informationen? also ich muss ehrlich sagen, die aufgabe isn knaller^^ =)

hat da jemand eine idee, wie man die lösen könnte?


LG
Bunti

        
Bezug
Gauß'scher Berg: Tipp
Status: (Antwort) fertig Status 
Datum: 19:23 Di 12.06.2007
Autor: dormant

Hi!

KEINE PANIK! Das ist eine Extremwertaufgabe mit einer Nebenbedingung :)
Also lass dich nicht abschrecken.

>  da war meine idee: die gauß-funktion ableiten und die
> extrem-stellen berechnen. nur wofür dann die anderen
> informationen?

Und was kriegst du raus für den positiven Extremwert? So wie es ausschaut ist er eindeutig. Gilt dann für diesen Extremwert xy=4? Wenn ja, dann bist du fertig :)

Wenn nicht, dann musst du eine Methode zum Ausrechnen von Extremwerten unter Nebenbedingungen. Die bekannteste ist die []Lagrange-Multiplikatoren-Methode.

Dann hast du als einzige Nebenbedingung g(x,y)=0 mit g(x,y)=xy-4 und hast [mm] h(x,y,\lambda)=f(x,y)+\lambda*g(x,y). [/mm]

Du sollst die kritischen Stellen der h-Funktion ausrechnen, das ist meistens ein LGS, das du lösen musst. Dann kriegst du Werte für x, y und [mm] \lambda [/mm] raus, die (x,y) Paare musst du mit f auswerten und schauen, in welchem Punkt der Max angenommen wird.

Es ist mir aufgefallen, dass der Artikel über Langrange-Multiplikatoren auf der englischen Wiki deutlich besser ist: []Lagrange-multipliers.

Es ist viel Arbeit, aber so kompliziert ist es auch nicht.

Gruß,
dormant

Bezug
                
Bezug
Gauß'scher Berg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Di 12.06.2007
Autor: Max80

hmm. ok danke! ich werde mich daran mal versuchen.

so ganz verstehe ich aber noch nicht diese nebenbedingung.

also mal zusammengefasst:
wie haben die funktion, und die frage lautet, wann jemand am höchsten punkt ist.

für mich heißt das auf deutsch: was sind die extrema?!

die nebenbedingung ist in einem ziemlich komischem satz verpackt wie ich finde. "jemand wandert auf diesem berg (also irgendwo, er muss nicht unbedingt über die spitze des berges?!) entlang seines weges xy=4 (d.h.?).

heißt das, er läuft einen weg lang, bei dem xy IMMER =4 ist? d.h. egal wo er sich befindet, xy=4 trifft an jeder stelle wo er lang läuft zu?

woher kommt die funktion g(x,y)=0 ? also was genau ist das für ne funktion? es ist die bedingung, aber warum dann g(x,y)?


vielen Dank!!!
LG
Bunti

Bezug
                        
Bezug
Gauß'scher Berg: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 12.06.2007
Autor: dormant

Hi!

> hmm. ok danke! ich werde mich daran mal versuchen.
>  
> so ganz verstehe ich aber noch nicht diese nebenbedingung.
>  
> also mal zusammengefasst:
>  wie haben die funktion, und die frage lautet, wann jemand
> am höchsten punkt ist.
>  
> für mich heißt das auf deutsch: was sind die extrema?!
>  
> die nebenbedingung ist in einem ziemlich komischem satz
> verpackt wie ich finde. "jemand wandert auf diesem berg
> (also irgendwo, er muss nicht unbedingt über die spitze des
> berges?!) entlang seines weges xy=4 (d.h.?).
>  
> heißt das, er läuft einen weg lang, bei dem xy IMMER =4
> ist? d.h. egal wo er sich befindet, xy=4 trifft an jeder
> stelle wo er lang läuft zu?

Genau. Unter allen (x,y)-Paaren, mit der Eigenschaft xy=4 will man wissen welches Paar f maximiert. Deine Funktion hat einen Extremwert, z.B. (3,3), aber für ihn gilt xy=4 nicht. OK?
  

> woher kommt die funktion g(x,y)=0 ? also was genau ist das
> für ne funktion? es ist die bedingung, aber warum dann
> g(x,y)?

Die Funktion g ist einfach die Nebenbedingung, mehr nicht. Man kann sie taufen wie man mag, sogar xy-4. Wichtig ist nur, dass die Konstante (4) auf die linke Seite gebracht wird.

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de