www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gauß'scher Integralsatz
Gauß'scher Integralsatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß'scher Integralsatz: Einführung
Status: (Frage) beantwortet Status 
Datum: 18:54 Do 13.09.2007
Autor: Deuterinomium

Also, unser Professor hat zur Einführung des Gauß'schen Integralsatz folgendes geschrieben:

Sei [mm] B\subset IR^2 [/mm] ein Normalbereich und parametrisiere den Rand [mm] \partial B[/mm] durch:
[mm] C_{1}:t\in[a,b]\mapsto(t,\alpha(t)) [/mm]
[mm] C_{2}:t\in[\alpha(b),\beta(b)]\mapsto(b,t) [/mm]
[mm] C_{3}:t\in[a,b]\mapsto(t,\beta(t)) [/mm]
[mm] C_{4}:t\in[\alpha(a),\beta(a)]\mapsto(a,t) [/mm]
Sei C der zusammengesetzte Weg aus [mm] C_{1},...,C_{4} [/mm].
Sei ferner [mm] F=(F_{1},F_{2}):B\to\IR^2 [/mm] ein stetiges Vektorfeld, so dass:
[mm] \bruch{\partialF_{1}}{\partialx} [/mm] und [mm]\bruch{\partialF_{2}}{\partialy}[/mm] stetig nach [mm]\partialB[/mm] fortsetzbar .
Es gilt:
[mm] \integral\integral_{B}{\bruch{\partialF_{2}}{\partialy}(x,y) dxdy} = \integral_{a}^{b}{dx}\integral_{\alpha(x)}^{\beta(x)}{\bruch{\partialF_{2}}{\partialy}(x,y) dxdy} [/mm] (nach Fubini)
[mm]=\integral_{a}^{b}{F_{2}(x,\beta(x))-F_{2}(x,\alpha(x)) dx} =\integral_{a}^{b}{F_{2}(x,\beta(x))-F_{2}(x,\alpha(x)) dx} =\integral_{a}^{b}{F_{2}(t,\beta(t))-F_{2}(t,\alpha(t)) dt} [/mm]

Bis hierhin meine ich es verstanden zu haben, aber jetzt kommt etwas, dass ich einfach nicht verstehe:
[mm] =\integral_{a}^{d}{F_{2}(C(t))(-\mu'(t)) dt} \quad wobei \quad (\mu,\nu)=C:[a,d]\to \IR^2[/mm]
[mm]=\integral_{a}^{d}{F_{2}(C(t))(\bruch{-\mu'(t)}{\parallel C'(t) \parallel})\parallel C'(t) \parallel dt} [/mm]
[mm]=\integral_{\gamma}{F_{2}v_{y}ds} \quad wobei \quad v(v_{x},v_{y})=\bruch{1}{\parallel C'(t) \parallel}(\nu',-\mu') [/mm]
[mm]=\integral_{\partialB}{F_{2}v_{y} ds} [/mm]  

Ab da ist der Rest dann wieder klar! Nur dieses Stück wirft mich voll aus der Bahn! Kann mir von euch da vielleicht jemand weiterhelfen?

Gruß
Deuterinomium

        
Bezug
Gauß'scher Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Fr 14.09.2007
Autor: rainerS

Hallo,

> Also, unser Professor hat zur Einführung des Gauß'schen
> Integralsatz folgendes geschrieben:
>  
> Sei [mm]B\subset IR^2[/mm] ein Normalbereich und parametrisiere den
> Rand [mm]\partial B[/mm] durch:
>  [mm]C_{1}:t\in[a,b]\mapsto(t,\alpha(t))[/mm]
>  [mm]C_{2}:t\in[\alpha(b),\beta(b)]\mapsto(b,t)[/mm]
>  [mm]C_{3}:t\in[a,b]\mapsto(t,\beta(t))[/mm]
>  [mm]C_{4}:t\in[\alpha(a),\beta(a)]\mapsto(a,t)[/mm]
>  Sei C der zusammengesetzte Weg aus [mm]C_{1},...,C_{4} [/mm].
>  Sei
> ferner [mm]F=(F_{1},F_{2}):B\to\IR^2[/mm] ein stetiges Vektorfeld,
> so dass:
>  [mm]\bruch{\partialF_{1}}{\partialx}[/mm] und
> [mm]\bruch{\partialF_{2}}{\partialy}[/mm] stetig nach [mm]\partialB[/mm]
> fortsetzbar .
>  Es gilt:
>  
> [mm]\integral\integral_{B}{\bruch{\partialF_{2}}{\partialy}(x,y) dxdy} = \integral_{a}^{b}{dx}\integral_{\alpha(x)}^{\beta(x)}{\bruch{\partialF_{2}}{\partialy}(x,y) dxdy}[/mm]
> (nach Fubini)
>  [mm]=\integral_{a}^{b}{F_{2}(x,\beta(x))-F_{2}(x,\alpha(x)) dx} =\integral_{a}^{b}{F_{2}(x,\beta(x))-F_{2}(x,\alpha(x)) dx} =\integral_{a}^{b}{F_{2}(t,\beta(t))-F_{2}(t,\alpha(t)) dt}[/mm]
>  
> Bis hierhin meine ich es verstanden zu haben, aber jetzt
> kommt etwas, dass ich einfach nicht verstehe:
>  [mm]=\integral_{a}^{d}{F_{2}(C(t))(-\mu'(t)) dt} \quad wobei \quad (\mu,\nu)=C:[a,d]\to \IR^2[/mm]

Du musst dir den Weg genau ansehen: er besteht aus [mm]C_1[/mm] und [mm]C_2[/mm], und dann [mm]C_3[/mm] und [mm]C_4[/mm], aber diese beiden in Gegenrichtung (wichtig wegen der Vorzeichen). Die genannte Parametrisierung [mm](\mu,\nu)=C:[a,d]\to \IR^2[/mm] zerfällt daher in 4 Teile, mit geeigneter Verschiebung des Parameters t auf den Einzelstücken:
[mm]C_1: t\in[a,b]\mapsto(t,\alpha(t))[/mm]
[mm]C_{2}:t\in[\alpha(b)+(b-\alpha(b)),\beta(b)+(b-\alpha(b))]\mapsto(b,t-(b-\alpha(b)))[/mm]
   usw.

[mm]\mu[/mm] und [mm]\nu[/mm] bezeichnen die x- und y-Koordinaten der Punkte auf C.

Bei [mm]C_2[/mm] und [mm]C_4[/mm] ist die x-Koordinate konstant, also ist entlang dieser beiden Teilstrecken [mm]\mu'=0[/mm].

Bei [mm]C_1[/mm] und [mm]C_3[/mm] ist die x-Koordinate gleich t (plus der passenden konstanten Verschiebung), also ist [mm]\mu'=1[/mm] bzw. [mm]\mu'=-1[/mm] (Gegenrichtung!).

Damit hast du gerade die beiden Terme aus dem Integral vorher.

Viele Grüße
  Rainer

Bezug
                
Bezug
Gauß'scher Integralsatz: Dankeschön!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Fr 14.09.2007
Autor: Deuterinomium

Ja super! Jetzt hats klick gemacht, da hätte ich aber auch allein drauf kommen können!

Vielen Dank!!!!

Gruß
Deuterinomium

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de