Gaussklammerrechnung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | 5. Eine Stadtverwaltung muss sich zwischen zwei Tarifen für Parkgebühren
entscheiden.
Tarif 1: Je 20 angefangene Minuten Parkzeit kosten 0,30
Tarif 2: Je 30 angefangene Minuten Parkzeit kosten 0,50
a) Stellen Sie die Funktion, die zu den beiden Tarifen gehören, bis zu einer
Parkzeit von 3 Stunden graphisch dar.
b) Wie müssen Sie den Graphen der Gaußklammerfunktion durch Dehnung, Spiegelung bzw. Verschiebungen verändern, damit die Graphen von Teilaufgabe a) entstehen?
Entwickeln Sie gleichzeitig schrittweise die Funktionsterme, die diesen Veränderungen entsprechen.
c) Für welche Parkzeiten (bis zu 3 Stunden) ist der Tarif 2 für die Stadtverwaltung günstiger? |
Hallo zusammen,
Kann mir bitte jemand bei dem Aufgabenteil c) helfen?
Teil a) habe ich erledigt
Teil b) habe ich wie folgt gelöst:
Tarif 1: f = (x) = [x]
Für die Spiegelung an der xAchse wird daraus: [mm] f_{x-Achse} [/mm] (x)= [-x]
Dann erfolgt die Spielung an der yAchse: [mm] f_{y-Achse}(x) [/mm] = - [-x]
Für die Streckung forme ich um: [mm] f_{x-Achse}(x)=-[\bruch{1}{30}x] [/mm]
Und für die Streckung an der y-Achse: [mm] f_{x-Achse}(x)=(-[-\bruch{1}{30}x]*20 [/mm]
Oder: f(x) = [mm] ([-\bruch{1}{30}x])*-20
[/mm]
Tarif 2: f = (x) = [x]
Spiegelung x-Achse: [mm] f_{x-Achse}(x)=[-x] [/mm]
Spiegelung y-Achse: [mm] f_{y-Achse}(x)=-[-x] [/mm]
Streckung x-Achse: [mm] f_{x-Achse}(x)=-[\bruch{1}{50}x] [/mm]
Streckung y-Achse: [mm] f_{y-Achse}(x)= -[\bruch{1}{50}x]*30 [/mm]
Oder: [mm] f(x)=([-\bruch{1}{50}x])*-30
[/mm]
Bei der Aufgabe c stehe ich nun vollkommen auf dem Schlauch.
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:54 Sa 29.03.2008 | Autor: | abakus |
> 5. Eine Stadtverwaltung muss sich zwischen zwei Tarifen
> für Parkgebühren
> entscheiden.
> Tarif 1: Je 20 angefangene Minuten Parkzeit kosten
> 0,30
> Tarif 2: Je 30 angefangene Minuten Parkzeit kosten
> 0,50
> a) Stellen Sie die Funktion, die zu den beiden Tarifen
> gehören, bis zu einer
> Parkzeit von 3 Stunden graphisch dar.
> b) Wie müssen Sie den Graphen der Gaußklammerfunktion
> durch Dehnung, Spiegelung bzw. Verschiebungen verändern,
> damit die Graphen von Teilaufgabe a) entstehen?
> Entwickeln Sie gleichzeitig schrittweise die
> Funktionsterme, die diesen Veränderungen entsprechen.
> c) Für welche Parkzeiten (bis zu 3 Stunden) ist der Tarif
> 2 für die Stadtverwaltung günstiger?
> Hallo zusammen,
>
> Kann mir bitte jemand bei dem Aufgabenteil c) helfen?
Die Hilfe hast du erst mal im Teil b) nötig, den du nicht verstanden hast.
Die Achsenspiegelungen sind völlig unnötig.
Die Gaußklammerfunktion y= [x] hat
von 0 bis an 1 heran den Wert 0
von 1 bis an 2 heran den Wert 1
von 2 bis an 3 heran den Wert 2 usw.
Du brauchst "breitere" Stufen (im Tarif 1 von 0 bis 20, 20 bis 40 ...).
Das schaffst du mit [x/20]. Allerdings würden die Werte von Stufe zu Stufe um 1 steigen, sie sollen aber nur um 0,30 steigen. Deshalb: 0,30*[x/20].
Letzter zu behebender Fehler: 0,30*[x/20] hat von 0 bis 20 den Wert 0,00, von 20 bis 40 den Wert 0,30 usw. Mann muss aber von Anfang an schon mindestens 0,30€ bezahlen, sämliche Preise wären also um 0,30 zu klein.
Deshalb: y=0,30*[x/20] + 0,30.
Tarif 2 geht gänz ähnlich, nur eben mit anderen Werten.
Wenn du beide Tarife grafisch dargestellt hast, kannst du im Koordinatensystem die Lösung für c) ablesen.
Viele Grüße
Abakus
> Teil a) habe ich erledigt
> Teil b) habe ich wie folgt gelöst:
> Tarif 1: f = (x) = [x]
> Für die Spiegelung an der x–Achse wird daraus: [mm]f_{x-Achse}[/mm]
> (x)= [-x]
> Dann erfolgt die Spielung an der y–Achse: [mm]f_{y-Achse}(x)[/mm] =
> - [-x]
> Für die Streckung forme ich um:
> [mm]f_{x-Achse}(x)=-[\bruch{1}{30}x][/mm]
> Und für die Streckung an der y-Achse:
> [mm]f_{x-Achse}(x)=(-[-\bruch{1}{30}x]*20[/mm]
> Oder: f(x) = [mm]([-\bruch{1}{30}x])*-20[/mm]
>
> Tarif 2: f = (x) = [x]
> Spiegelung x-Achse: [mm]f_{x-Achse}(x)=[-x][/mm]
> Spiegelung y-Achse: [mm]f_{y-Achse}(x)=-[-x][/mm]
> Streckung x-Achse: [mm]f_{x-Achse}(x)=-[\bruch{1}{50}x][/mm]
> Streckung y-Achse: [mm]f_{y-Achse}(x)= -[\bruch{1}{50}x]*30[/mm]
> Oder: [mm]f(x)=([-\bruch{1}{50}x])*-30[/mm]
>
> Bei der Aufgabe c stehe ich nun vollkommen auf dem
> Schlauch.
> Vielen Dank
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|