www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Gaußsche Algorithmus
Gaußsche Algorithmus < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußsche Algorithmus: ganzrationale Funktion
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 16.01.2006
Autor: MIB

Aufgabe
Finden Sie eine ganzrationale Funktion dritten Grades, deren Graph durch den Ursprung verläuft und die einen Wendepunkt bei W(-1/-7) besitzt, in dem die Steigung 6 beträgt. Lösen Sie mit Hilfe des Gaußschen Algorithmus.

Hallo,

wollte wissen, ob das so stimmt.

Ich habe mir zuerst überlegt, da es sich ja um eine Funtkion 3 handelt, die durch den Ursprung geht, muss es [mm] x^3 [/mm] sein.

Dann macht man f(x), macht die 1. und 2. Ableitung

Danach macht man Gauß und kommt zum Ergebnis:

f(x) = [mm] x^3 [/mm] + [mm] 3x^2 [/mm] + 9x

Kommt jemand auf dieses Ergebnis, wenn nicht führe ich noch näher aus.

DANKE

        
Bezug
Gaußsche Algorithmus: Stimmt!
Status: (Antwort) fertig Status 
Datum: 21:31 Mo 16.01.2006
Autor: Loddar

Hallo MIB!


[daumenhoch] Das Ergebnis kann ich bestätigen, das habe ich auch erhalten!


Gruß
Loddar


Bezug
                
Bezug
Gaußsche Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 16.01.2006
Autor: MIB

Hallo Loddar,

vielen Dank für die schnelle Antwort.

Wollte wissen ob es noch eine andere, schnellere Möglichkeit gibt, diese Aufgabe zu lösen, oder muss man das so machen, wie ich es beschrieben habe?

DANKE

Bezug
                        
Bezug
Gaußsche Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Di 17.01.2006
Autor: Kuebi

Hallo du!
  

> Wollte wissen ob es noch eine andere, schnellere
> Möglichkeit gibt, diese Aufgabe zu lösen, oder muss man das
> so machen, wie ich es beschrieben habe?

Für dein spezielles Problem bietet sich am sinnvollsten die Interpolation (das Verfahren wie du es gemacht hast) an. D.h., zu n+1 gefundenen Bedingungen die die Funktion erüllen soll, ein Polynom n-ten Grades aufzustellen.

Weitere Möglichkeiten zur (näherungsweisen) Bestimmungen wären die Taylor-Entwicklung oder die lineare oder quasilineare Regression. (Begriffe zum Nachschlagen! ;-) )

Da du aber mit größer Wahrscheinlichkeit immer wieder auf Aufgaben des Typs hier stößt, wird das Verfahren immer dasselbe bleiben.

Ich nehme an, dass du in der Schule keine Taylor-Entwicklungen und nur am Rande Regressionen durchführen wirst.

Okay?

Vlg, Kübi


Bezug
                                
Bezug
Gaußsche Algorithmus: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Di 17.01.2006
Autor: MIB

Alles klar, dann bleibe ich lieber beim Gauß


DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de