www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gaußscher bzw. Stokesscher Int
Gaußscher bzw. Stokesscher Int < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußscher bzw. Stokesscher Int: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:11 Sa 05.05.2007
Autor: useratmathe

Aufgabe
Berechne mit Hilfe des Gaußscher bzw. Stokesscher Integralsatzes [mm] \int_{S}\int [/mm] x dy dz + y dz dx + z dx dy und [mm] \int_{S}\int [/mm] y dy dz + z dz dx + x dx dy jeweils über der Außenseite der Kugeloberfläche [mm] x^2+y^2+z^2 [/mm] = [mm] a^2 [/mm]

So dies ist meine Aufgabe und ich weiß leider fast gar nicht wie ich überhaupt ansätzen soll? Wie sieht sowas denn aus?

Ich dachte es sei eine Kugel mit dem Radius a im Koordinatenurpsrung??

        
Bezug
Gaußscher bzw. Stokesscher Int: Antwort
Status: (Antwort) fertig Status 
Datum: 04:03 Di 08.05.2007
Autor: MatthiasKr

Hallo,
> Berechne mit Hilfe des Gaußscher bzw. Stokesscher
> Integralsatzes [mm]\int_{S}\int[/mm] x dy dz + y dz dx + z dx dy und
> [mm]\int_{S}\int[/mm] y dy dz + z dz dx + x dx dy jeweils über der
> Außenseite der Kugeloberfläche [mm]x^2+y^2+z^2[/mm] = [mm]a^2[/mm]
>  
> So dies ist meine Aufgabe und ich weiß leider fast gar
> nicht wie ich überhaupt ansätzen soll? Wie sieht sowas denn
> aus?
>  

Also, was sagt der Satz von Stokes in seiner allgemeinsten form aus? grob gesprochen, setzt er volumen- und flaechenintegral in beziehung und das mit der unglaublich eleganten formel

[mm] $\int_M d\omega=\int_{\partial M} \omega$, [/mm]

wobei $M$ eine teilmenge im [mm] $\mathbb{R}^n$ [/mm] ist und [mm] $\omega$ [/mm] eine differentialform.
In deiner aufgabe sollst du differentialformen ueber den rand einer kugel integrieren. Nach Stokes kannst du statt dessen auch die diff.-form ableiten (aeussere ableitung) und das dann ueber die gesamte kugel volumen-integrieren. Das ist wohl mit der aufgabe gemeint.... ;-)

VG
Matthias

> Ich dachte es sei eine Kugel mit dem Radius a im
> Koordinatenurpsrung??


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de