www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Gebochenrationale Funktion ges
Gebochenrationale Funktion ges < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebochenrationale Funktion ges: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:08 So 26.11.2006
Autor: J.W.5

Aufgabe
Geben Sie die Gleichung einer gebrochenrationalen Funktion an, deren Graph die x-Achse an der Stelle x=1 schneidet und die Geraden x=2 und y=0,5 als Asymptoten hat.  

Hallo Leute,

ich weiß nicht womit ich bei dieser Aufgabe beginnen muss. Ist das so eine Art Steckbriefaufgabe??
Ich danke für jede Hilfe.

mfg J.W.

        
Bezug
Gebochenrationale Funktion ges: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 26.11.2006
Autor: Stefan-auchLotti


> Geben Sie die Gleichung einer gebrochenrationalen Funktion
> an, deren Graph die x-Achse an der Stelle x=1 schneidet und
> die Geraden x=2 und y=0,5 als Asymptoten hat.
> Hallo Leute,
>
> ich weiß nicht womit ich bei dieser Aufgabe beginnen muss.
> Ist das so eine Art Steckbriefaufgabe??
>  Ich danke für jede Hilfe.
>
> mfg J.W.  

[mm] \text{Hi,} [/mm]

[mm] \text{Ja, das ist es. Stelle 1 schneiden: Zähler wird bei 1 gleich 0.} [/mm]

[mm] \text{x=2 als Asymptote: Polstelle bei 2 -> Nenner für 2 gleich 0.} [/mm]

[mm] \text{y=0,5 als Asymptote: Koeffizienten so wählen, dass der Quotient aus ihnen 0,5 ergibt (Voraussetzung: m=n).} [/mm]

[mm] $\Rightarrow f:f(x)=\bruch{x-1}{2x-4}$ [/mm]

[mm] \text{Der Zähler kann nur so sein, da 1 keine doppelte Nullstelle sein darf, da die x-Achse geschnitten, und nicht nur berührt} [/mm]

[mm] \text{wird (also nicht:}\;$x^2-1$\;\text{oder}\;$x^3-1$\text{). Daraus folgt, dass dir als Koeffizient (mit Voraussetzung, dass die Polynome denselben} [/mm]

[mm] \text{Grad haben) nur 2 sein kann, da 1 durch 2 0,5 ergibt. Jetzt musst du den Nenner so kreieren, dass er bei Nullsetzung die} [/mm]

[mm] \text{Stelle 2 als Def.-Lücke freigibt.} [/mm]

[mm] \text{Gruß, Stefan.} [/mm]

Bezug
                
Bezug
Gebochenrationale Funktion ges: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:42 So 26.11.2006
Autor: J.W.5

Aufgabe
s.o.

hallo,
dankeschön für deine Antwort. Hat mich um einiges weitergebracht.
Eine Sache ist mir dennoch nicht ganz klar. Doppelte Nullstelle?!? Habe ich noch nie gehört. Was soll das sein? Außerdem hast du geschrieben, ich soll den Nenner so kreieren, dass 2 bei Nullsetzung rauskommt. Aber das kommt doch schon mit 2x-4 raus. Oder bin ich da auf dem Holzweg?
Danke

Bezug
                        
Bezug
Gebochenrationale Funktion ges: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 So 26.11.2006
Autor: Stefan-auchLotti


> s.o.
>  hallo,
> dankeschön für deine Antwort. Hat mich um einiges
> weitergebracht.
> Eine Sache ist mir dennoch nicht ganz klar. Doppelte
> Nullstelle?!? Habe ich noch nie gehört. Was soll das sein?
> Außerdem hast du geschrieben, ich soll den Nenner so
> kreieren, dass 2 bei Nullsetzung rauskommt. Aber das kommt
> doch schon mit 2x-4 raus. Oder bin ich da auf dem Holzweg?
>  Danke

[mm] \text{Ja, ich hab' das ein wenig verdreht dargestellt, du hast natürlich Recht, du sollst das so bilden, dass am Ende dann} [/mm]

$2x-4$

[mm] \text{da steht.} [/mm]

[mm] \text{Ich hab' da ein wenig Mist geredet. Wenn da}\;$x^2-1$\;\text{stünde, so kämen ja 1 und -1 in Frage, also wäre 1 keine} [/mm]

[mm] \text{doppelte Nullstelle. Soeine läge vor, wenn im Nenner einfach nur};\$x^2$\;\text{stünde, dann gäbe es als Lösungen so-} [/mm]

[mm] \text{zusagen ja +0 und -0, was ja beides 0 ist. Eine doppelte Nullstelle ist eine Nullstelle, wo der Graph die x-Achse nur berührt} [/mm]

[mm] \text{und nicht schneidet, und das kann nur sein, wenn es ein Hoch- oder ein Tiefpunkt ist. Setze den Zähler mal gleich 0 und füh-} [/mm]

[mm] \text{re eine Kurvendiskussion durch, so wirst du sehen, dass in diesem Fall die x-Achse nur berührt wird.} [/mm]

[mm] \text{Gruß, Stefan.} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de