www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Gebr. rat. Fkt. untersuchen
Gebr. rat. Fkt. untersuchen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebr. rat. Fkt. untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Mi 23.01.2008
Autor: die_anke

Aufgabe
für jedes t>0 ist eine Fkt [mm] f_{t} [/mm] gegeben durch:  [mm] f_{t}(x)=\bruch{4x^{2}}{x^{2}+3t^{2}} [/mm] ; x [mm] \in [/mm] e [mm] \IR [/mm]  
ihr schaubild sei [mm] K_{t} [/mm]

aufg b): die Kurve [mm] K_{1}, [/mm] die positive x-Achse und die Gerade x=1 begerenzen eine Fläche mit Inhalt A. Einen Näherungswert [mm] \overline{A} [/mm] für A erhält man, indem man [mm] K_{1} [/mm] durch eine Parabel 4. Ordnung ersetzt. Diese Parabel soll symmetrisch zur y-Achse sein und die Kurve [mm] K_{1} [/mm] im Ursprung und im Pkt. [mm] P_{1} [/mm] (1/1) verühren.
Bestimmen sie die Gleichung dieser Parabel.
Berechnen Sie [mm] \overline{A}. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo erst einmal..
Ich hoffe hier kann mir jemand bei dieser Aufgabe helfen. Bin sonst eigentlich ein mittelguter MatheSchüler aber bei dieser Aufgabe komme ich einfach nciht weiter. Ich hoffe das hat auch alles mit der Formeleingabe geklappt.
Also mein größtes Problem ist, dass ich nicht weiß was mit der Parabel 4. Ordnung gemeint ist [mm] x^{4} [/mm] ? aber dann wäre die aufgabenstellung, berechne die gleichung der parabel ja schon gelöst... Wie kann ich auf die richtige gleichung kommen?? Habe ja nur den y-Achenabschnitt.

Naja, also wie gesagt ich hoffe mir kann jm helfen... Wenn ich die Aufgabe geschafft habe dann folgen dann auch ncoh die anderen Aufgabenstellungen.. ;)

Liebe Grüße

        
Bezug
Gebr. rat. Fkt. untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:28 Do 24.01.2008
Autor: Somebody


> für jedes t>0 ist eine Fkt [mm]f_{t}[/mm] gegeben durch:  
> [mm]f_{t}(x)=\bruch{4x^{2}}{x^{2}+3t^{2}}[/mm] ; x [mm]\in[/mm] e [mm]\IR[/mm]  
> ihr schaubild sei [mm]K_{t}[/mm]
>  
> aufg b): die Kurve [mm]K_{1},[/mm] die positive x-Achse und die
> Gerade x=1 begerenzen eine Fläche mit Inhalt A. Einen
> Näherungswert [mm]\overline{A}[/mm] für A erhält man, indem man
> [mm]K_{1}[/mm] durch eine Parabel 4. Ordnung ersetzt. Diese Parabel
> soll symmetrisch zur y-Achse sein und die Kurve [mm]K_{1}[/mm] im
> Ursprung und im Pkt. [mm]P_{1}[/mm] (1/1) verühren.
> Bestimmen sie die Gleichung dieser Parabel.
>  Berechnen Sie [mm]\overline{A}.[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo erst einmal..
> Ich hoffe hier kann mir jemand bei dieser Aufgabe helfen.
> Bin sonst eigentlich ein mittelguter MatheSchüler aber bei
> dieser Aufgabe komme ich einfach nciht weiter. Ich hoffe
> das hat auch alles mit der Formeleingabe geklappt.
> Also mein größtes Problem ist, dass ich nicht weiß was mit
> der Parabel 4. Ordnung gemeint ist [mm]x^{4}[/mm] ?

Der Graph einer Polynomfunktion (aka. ganzrationale Funktion) 4. Grades. Also etwas von der Form $p(x):= [mm] ax^4+bx^3+cx^2+dx+e$, [/mm] mit [mm] $a\neq [/mm] 0$. Da aber zudem diese Parabel symmetrisch zur $y$-Achse sein soll, muss es sich um eine "gerade Funktion" handeln, es muss also $p(-x)=p(x)$ gelten, für alle $x$. Dies bedeutet, dass im Funktionsterm von $p(x)$ nur gerade Potenzen von $x$ auftreten dürfen. Also kann man gleich den einfacheren Ansatz $p(x) := [mm] ax^4+bx^2+c$ [/mm] machen. $a,b,c$ sind dann aus den weiteren Bedingungen, denen $p(x)$ genügen muss, zu bestimmen. Du benötigst also zur Bestimmung der verbleibenden drei Formvariablen $a,b,c$ auch drei Gleichungen, um eine eindeutige Lösung für $p(x)$ zu erhalten. Dies sind: (1) $p(x)$ muss [mm] $K_1$ [/mm] im Ursprung berühren. (2) $p(x)$ muss [mm] $K_1$ [/mm] im Punkt $P(1/1)$ berühren.
Dies sind, auf den ersten Blick beurteilt, scheinbar nur zwei Gleichungen, aber "berühren" bedeutet eben, dass in diesen beiden Punkten auch die Steigungen der beiden Kurven (also die Ableitungen der zugehörigen Funktionen) gleich sind. (Somit besteht allenfalls die Gefahr, dass wir zuviele Gleichungen, nämlich vier, erhalten und es vielleicht gar keine Lösung gibt...)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de