www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Gebrochen-rationale Funktionen
Gebrochen-rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochen-rationale Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:45 Mo 30.05.2005
Autor: Andi235

Hallo!

Also gegeben sind folgende Möglichkeiten für die Produktion einer bestimmten Menge eines Produktes.
(2/12)
(4/6)
(10/4)

Und die folgende Funktion hab ich: f(x)= [mm] \bruch{k}{x-a}+b [/mm]
Als nächstes muss ich ja die Werte in die Funktion einsetzen.

12= [mm] \bruch{k}{2-a}+b [/mm]
6= [mm] \bruch{k}{4-a}+b [/mm]
4= [mm] \bruch{k}{10-a}+b [/mm]

Aber wie muss ich jetzt die Funktionen auflösen, damit ich weiter rechen kann?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gebrochen-rationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 30.05.2005
Autor: Bastiane

Hallo!
> Also gegeben sind folgende Möglichkeiten für die Produktion
> einer bestimmten Menge eines Produktes.
>  (2/12)
>  (4/6)
>  (10/4)
>  
> Und die folgende Funktion hab ich: f(x)= [mm]\bruch{k}{x-a}+b[/mm]
>  Als nächstes muss ich ja die Werte in die Funktion
> einsetzen.
>  
> 12= [mm]\bruch{k}{2-a}+b[/mm]
>  6= [mm]\bruch{k}{4-a}+b[/mm]
>  4= [mm]\bruch{k}{10-a}+b[/mm]
>  
> Aber wie muss ich jetzt die Funktionen auflösen, damit ich
> weiter rechen kann?

Also, es wäre nicht schlecht, wenn du auch sagen würdest, was du denn eigentlich machen sollst...
Da du drei Gleichungen hast und in deiner Funktionsvorschrift drei Unbekannte (a,b,k) auftreten, vermute ich mal, dass du die berechnen sollst. Wobei mir das schon etwas komisch vorkommt, denn normalerweise bleiben k's immer stehen, und man berechnet dann etwas in Abhängigkeit von k.

Also, falls du etwas anderes machen sollst, musst du es sagen. ;-)

Du kannst jetzt zum Beispiel die erste Funktion nach b auflösen - das sieht dann so aus:

12= [mm]\bruch{k}{2-a}+b[/mm]
[mm] \gdw b=12-\bruch{k}{2-a} [/mm]

Dann kannst du das in die zweite Gleichung einsetzen:
6= [mm]\bruch{k}{4-a}+b[/mm]
[mm] \Rightarrow 6=\bruch{k}{4-a}+12-\bruch{k}{2-a} [/mm]

Das kannst du nun mit den Regeln des Bruchrechnens nach a oder k auflösen, dann in die letzte Gleichung einsetzen und das dann wiederum auflösen, nämlich nach der letzten Unbekannten. Dann kannst du quasi rückwärts alle Werte berechnen.
Probier's doch mal - wir korrigieren gerne deine Ergebnisse.

viele Grüße
Bastiane
[banane]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de