www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Gebrochenrationale Funktion
Gebrochenrationale Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Funktion: Frage
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 05.01.2005
Autor: Derrick333

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo alle zusammen!

Ich habe bei der folgenden Funktion Probleme mit Wendestellen und Asymtote.

[mm] \bruch{2*k}{k*e^x+1}, [/mm] k>0

Währe froh wenn mir da jemand helfen könnte

        
Bezug
Gebrochenrationale Funktion: Lösungswege / -ergebnisse?
Status: (Antwort) fertig Status 
Datum: 22:36 Mi 05.01.2005
Autor: informix

Hallo Derrick333,
[willkommenmr]

> Hallo alle zusammen!
>  
> Ich habe bei der folgenden Funktion Probleme mit
> Wendestellen und Asymtote.
>  
> [mm]\bruch{2*k}{k*e^x+1},[/mm] k>0
>  

Könntest du uns deine Probleme genauer schildern? Meine Glaskugel hat noch Ferien. ;-)
Am besten zeigst du uns deien Rechnungen, dann können wir gezielt antworten und du lernst mehr dabei.

Und lies bitte mal unsere Forenregeln.
  

Bezug
                
Bezug
Gebrochenrationale Funktion: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 22:51 Mi 05.01.2005
Autor: Derrick333

Also meine 1. Abl sieht so aus
[mm] \bruch{-2*(k^2)*e^x}{(k*e^x+1)^2} [/mm]
die 2. Abl wie folgt:
[mm] \bruch{2(k^2)*(e^x)*(k*(e^x)-1}{(k*(e^x)+1)^3} [/mm]

Meine Frage ist nun sind die Abl. richtig und dann komme bei der Wendestelle nicht weiter.

Bezug
                        
Bezug
Gebrochenrationale Funktion: Ableitungen ok !!
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 05.01.2005
Autor: Loddar

N'Abend Derrick333!

Na, dann schauen wir mal ...

> Also meine 1. Abl sieht so aus
> [mm]\bruch{-2*(k^2)*e^x}{(k*e^x+1)^2}[/mm]

[daumenhoch]



> die 2. Abl wie folgt:
> [mm]\bruch{2(k^2)*(e^x)*(k*(e^x)-1}{(k*(e^x)+1)^3}[/mm]

[daumenhoch] (Über die unterschlagene Klammer am Ende des Zählers reden wir mal nicht ;-) ).


> Meine Frage ist nun sind die Abl. richtig [applaus]

> und dann komme bei der Wendestelle nicht weiter.

Für die Ermittlung der Wendestellen benötigen wir zunächst die Nullstellen der 2. Ableitung (sog. "notwendiges Kriterium"):
[mm] $f''(x_W) [/mm] = [mm] \bruch{2k^2*e^x*(ke^x-1)}{(ke^x+1)^3} [/mm] = 0$

Bei einem Bruch brauchen wir uns dafür lediglich den Zähler anzusehen:
[mm] $\Rightarrow$ $2k^2*e^x*(ke^x-1) [/mm] = 0$

Ein Produkt ist genau dann gleich 0, wenn (mindestens) einer der Faktoren gleich Null ist:
[mm] $2k^2*e^x [/mm] = 0$  oder  [mm] $ke^x-1 [/mm] = 0$

Kommst Du nun alleine weiter??
Ich habe eine (mögliche) Wendestelle erhalten: [mm] $x_W [/mm] = - ln(k)$
(bitte nachrechnen ...)


Nicht vergessen: für die Wendestellen benötigen wir auch noch die 3. Ableitung [eek] ("hinreichendes Kriterium") !!
Es sei denn, wir weisen die Wendestellen über Vorzeichenwechsel in der 2. Ableitung nach. Das macht sich aber bei Funktionsscharen aber meist nicht ganz so gut ...

Melde Dich doch dann einfach mal mit Deiner 3. Ableitung.


Grüße
Loddar


Bezug
        
Bezug
Gebrochenrationale Funktion: Asymptoten
Status: (Antwort) fertig Status 
Datum: 23:41 Mi 05.01.2005
Autor: Loddar

Für die Asymptoten müssen wir uns die Grenzwerte der Funktion für $x [mm] \to \pm \infty$ [/mm] betrachten ...  

[mm]f(x) = \bruch{2k}{ke^x+1}[/mm]


[1] [mm] $\limes_{x\rightarrow-\infty} [/mm] f(x) = [mm] \limes_{x\rightarrow-\infty}\bruch{2k}{ke^x+1} [/mm] = [mm] \bruch{2k}{k*0+1} [/mm] = [mm] \bruch{2k}{1} [/mm] = 2k$


[2] [mm] $\limes_{x\rightarrow+\infty} [/mm] f(x) = [mm] \limes_{x\rightarrow+\infty}\bruch{\bruch{2k}{e^x}}{k+\bruch{1}{e^x}} [/mm] = [mm] \bruch{0}{k+0} [/mm] = 0$


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de