Gebrochenrationale Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Für jedes t>0 ist eine Funktion f, gegeben durch [mm] ft(x)=\bruch{8x-4t}{x}. [/mm] Ihr Graph sei Kt. |
a) Wie kann ich Graphen Kt von verschiedenen Funktionen mit verschiedenen Werten von t in einem eigenen Intervall 1 mit meinem GTR zeichnen?
b) Wie führe ich eine Funktionsuntersuchung durch?
c) Wie erhalte ich die Ortslinie der Hochpunkte von Kt?
d) Es sei N der Schnittpunkt von K2 mit der x-Achse und P(u/v) mit u>1 ein Punkt auf K2. Die Punkte N, P und Q (u/0) sind die Eckpunkte eines Dreiecks. Für welchen Wert von u wird der Flächeninhalt dieses Dreiecks extremal?
|
|
|
|
> Für jedes t>0 ist eine Funktion f, gegeben durch
> [mm]f_t(x)=\bruch{8x-4t}{x}.[/mm] Ihr Graph sei [mm] K_t.
[/mm]
> a) Wie kann ich Graphen [mm] K_t [/mm] von verschiedenen Funktionen
> mit verschiedenen Werten von t in einem eigenen Intervall 1
> mit meinem GTR zeichnen?
Hallo,
ob es dafür einen Automatismus gibt., weiß ich nicht.
Das ist aber auch egal. An Deine Funktioenschar kommst Du, indem Du die graphen für verschiedene t, etwa t=1, t=5 und t=11, zeichnen läßt.
> b) Wie führe ich eine Funktionsuntersuchung durch?
Genau wie jede andere Funktionsuntersuchung auch. Deine variable ist das x, und das t ist so zu behandeln, als stünde dort irgendeine Zahl.
> c) Wie erhalte ich die Ortslinie der Hochpunkte von [mm] K_t?
[/mm]
Das kann man natürlich am besten zeigen, wenn Du die extremwerte ausgerechnet hast.
Mal angenommen, Du hättest gefunden, daß der Extremwert immer bei (2t-3 / [mm] 4t^2) [/mm] liegt.
Dann geht das so
x=2t-1 ==> t=bruch{x+1}{2}
[mm] y=4t^2 [/mm] (nun das t von oben einsetzen:)
[mm] =4(bruch{x+1}{2})^2.
[/mm]
Der Graph von [mm] g(x)=4(bruch{x+1}{2})^2 [/mm] ist dann die gesuchte Ortslinie.
> d) Es sei N der Schnittpunkt von [mm] K_2 [/mm] mit der x-Achse und
> P(u/v) mit u>1 ein Punkt auf [mm] K_2. [/mm] Die Punkte N, P und Q
> (u/0) sind die Eckpunkte eines Dreiecks. Für welchen Wert
> von u wird der Flächeninhalt dieses Dreiecks extremal?
Wie weit bist Du hier gekommen? Wo ist das Problem? (Das t hast Du in dieser Aufgabe ja nicht mehr. Du betrachtest jetzt [mm] f_2. [/mm] )Das ist eine Extremwertaufgabe mit Nebenbedingungen.
Gruß v. Angela
|
|
|
|