www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Gedämpfte Schwingung
Gedämpfte Schwingung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedämpfte Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 11.12.2012
Autor: Basser92

Aufgabe
Gegeben sei die Differentialgleichung [mm] x''+2\gamma x'+\omega_{0}^{2}x=0 [/mm] mit [mm] \gamma [/mm] , [mm] \omega_{0}>0. [/mm]
a) Zeigen Sie, dass der Ansatz [mm] x(t)=a*e^{kt} [/mm] die Gleichung löst und bestimmen Sie die möglichen Werte für k.
b) Zeigen SIe, dass es drei unterschiedliche Fälle geben kann (Schwingung, aperiodischer Grenzfall, Dämpfung) und bestimmen Sie ein Kriterium wann diese Fälle zutreffen.

Wie zeige ich, dass Der Ansatz die Gleichung löst? Die Werte für k habe ich schon bestimmt. Und wie komme ich dann auf die verschiedenen Fälle? Hab da leider in den Vorlesungsmitschriften nichts gefunden...

        
Bezug
Gedämpfte Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Di 11.12.2012
Autor: Valerie20

Hi!

> Gegeben sei die Differentialgleichung [mm]x''+2\gamma x'+\omega_{0}^{2}x=0[/mm]
> mit [mm]\gamma[/mm] , [mm]\omega_{0}>0.[/mm]
>  a) Zeigen Sie, dass der Ansatz [mm]x(t)=a*e^{kt}[/mm] die Gleichung

Dann bilde doch mal die Ableitungen von $x(t)$ und setzte das in deine Differenzialgleichung ein.

Weiterhin solltest du die Nullstellen der entstehenden Gleichung Betrachten und diese interpretieren.





Bezug
                
Bezug
Gedämpfte Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 11.12.2012
Autor: Basser92

Als nullstellen hab ich jetzt [mm] t=\bruch{ln(ak^{2}+2\gamma ak+\omega_{0}^{2}a)}{k}. [/mm]
Wenn es für alle t Null sein muss, muss [mm] k=-\gamma \pm \wurzel{\gamma^{2}-\omega_{0}^{2}} [/mm] sein, was ich ja schon berechnet hatte. Aber ich weiß net, was mir das alles jetzt sagen soll...

Bezug
                        
Bezug
Gedämpfte Schwingung: komplexe Nullstellen
Status: (Antwort) fertig Status 
Datum: 21:19 Di 11.12.2012
Autor: Helbig


> Als nullstellen hab ich jetzt [mm]t=\bruch{ln(ak^{2}+2\gamma ak+\omega_{0}^{2}a)}{k}.[/mm]
>  
> Wenn es für alle t Null sein muss, muss [mm]k=-\gamma \pm \wurzel{\gamma^{2}-\omega_{0}^{2}}[/mm]
> sein, was ich ja schon berechnet hatte. Aber ich weiß net,
> was mir das alles jetzt sagen soll...

Hallo Basser92,

Deine beiden Nullstellen des charakteristischen Polynoms [mm] $k^2 [/mm] + [mm] 2\gamma [/mm] k [mm] +\omega_0^2$ [/mm] sind für [mm] $\gamma^2 \ge \omega_0^2$ [/mm] richtig bestimmt. Andernfalls hast Du die komplexen Nullstellen [mm] $k=-\gamma \pm i\sqrt {\omega_0^2 - \gamma^2}\,.$ [/mm]

Untersuche jetzt das Lösungsverhalten getrennt nach den drei Fällen

    [mm] $\gamma^2 [/mm] < [mm] \omega_0^2$, $\gamma^2 [/mm] = [mm] \omega_0^2$ [/mm] und [mm] $\gamma^2 [/mm] > [mm] \omega_0^2\,.$ [/mm]

Grüße,
Wolfgang


Bezug
                                
Bezug
Gedämpfte Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 11.12.2012
Autor: Basser92

Ich hab doch gar keine komplexen Nullstellen, wenn [mm] \gamma [/mm] und [mm] \omega_{0} [/mm] größer als 0 sind, wie es in der Aufgabenstellung steht?

Edit: Sorry, verlesen... Jetzt hab ich ja wieder was zum rechnen^^ Ich meld mich dann nochmal, wenn ich nicht mehr weiter komm ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de