www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Gehälter
Gehälter < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gehälter: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:48 Fr 28.03.2008
Autor: Nerd666

Aufgabe
In einem jungen Softwareunternehmen beträgt der Zentralwert
aller gezahlten Gehälter 3200 EURO und das arithmetische Mittel 3400
EURO. Aufgrund der großen Nachfrage nach Softwarespezialisten sowie der
ständigen Abwerbungsversuche durch Konkurrenten und Personalberater werden die Gehälter der besten Kräfte um 12% erhöht. Auf die Gruppe der
Begunstigten entfielen vor der Erhöhung die 20% höchsten Gehälter bzw.
40% der gesamten Gehaltssumme. Wie hoch sind arithmetisches Mittel und
Median nach der Gehaltserhohung?

Ich denke, daß der Median unbeeindruckt bleibt, da er sich höchstwahrscheinlich nicht in derjenigen Klasse befinden wird, in dem die Erhöhungen stattfinden.
Beim arithmetischen Mittel habe ich keine Ahnung. Bitte helft mir.
Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gehälter: Antwort
Status: (Antwort) fertig Status 
Datum: 01:46 Sa 29.03.2008
Autor: BertanARG

Hi,

also, das ist ein wenig verzwickt, aber es ist machbar. Was den Median betrifft, so hast du recht. Da ja nur 20% eine Gehaltserhöhung erhalten, ist der Median davon nicht betroffen. Ich habe mir die folgende Anordnung vorgestellt, die hilfreich sein kann...

[mm] x_1 [/mm] < [mm] x_2 [/mm] < ... < [mm] x_{m} [/mm] < [mm] x_{m+1} [/mm] < ... < [mm] x_k [/mm] < [mm] x_{k+1} [/mm] < ... < [mm] x_n [/mm]

m ist der median-spezifische Index. Ist n ungerade, so ist [mm] x_{m} [/mm] der Median. Ist n gerade, so wird der Median aus dem Mittelwert von [mm] x_{m} [/mm] und [mm] x_{m+1} [/mm] gebildet.
k ist der Index des Mitarbeiters, der als letzter nicht mehr zu den oberen 20% zählt. Die Gehaltserhöhung erhalten also alle Mitarbeiter k+1, ..., n-1, n.

Nun gilt ja

(1)   [mm] \overline{x} [/mm] = [mm] \bruch{1}{n}\summe_{i=1}^{n} x_i [/mm] = [mm] \bruch{1}{n}(\summe_{i=1}^{k} x_i [/mm] + [mm] \summe_{i=k+1}^{n} x_i) [/mm] = 3400

Außerdem ist bekannt, dass die oberen 20% der Mitarbeiter 40% des gesamten Mitarbeitergehalts besitzen, also
(2)   [mm] \summe_{i=k+1}^{n} x_i [/mm] = 0,4*n*3400

Jetzt erhalten die besten 20% eine 12%-ige Gehaltserhöhung, woraus ein neuer Mittelwert [mm] \mu [/mm] entsteht.

Es gilt
(3)   [mm] \mu [/mm] = [mm] \bruch{1}{n}(\summe_{i=1}^{k} x_i [/mm] + [mm] \summe_{i=k+1}^{n} 1,12*x_i) [/mm]


Jetzt die Differenz aus (3) und (1) bilden, wodurch die erste Summe wegfällt! Dann Gleichung (2) einsetzen

[mm] \mu [/mm] - 3400 = [mm] \bruch{1}{n}(\summe_{i=k+1}^{n} 0,12*x_i) [/mm] = [mm] 0,12*\bruch{1}{n}\summe_{i=k+1}^{n} x_i [/mm] = [mm] 0,12*\bruch{1}{n}*0,4*n*3400 [/mm] = 0,12*0,4*3400 = 163,2

Also [mm] \mu [/mm] = 3563,2


Grüße

Bezug
                
Bezug
Gehälter: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Sa 29.03.2008
Autor: Nerd666

Das ist richtig!
Vielen Dank. Ich bin bis zur Aufteilung des Summenzeichens gekommen und habe mich danach verloren.
Danke nochmals.

Cheerio.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de