www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Gemischte Brüche
Gemischte Brüche < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gemischte Brüche: Meinungen zur Schreibweise
Status: (Umfrage) Beendete Umfrage Status 
Datum: 10:04 So 04.02.2018
Autor: Al-Chwarizmi

Aufgabe
In Wikipedia findet man den Abschnitt:

" Ein Problem der gemischten Schreibweise ist, dass sie
als Produkt missverstanden werden kann:

So steht $\ [mm] 2\,\tfrac{1}{3}$ [/mm] meist für $\ 2 + [mm] \tfrac{1}{3}\ [/mm]  =\  [mm] \tfrac{7}{3}$ [/mm] und nicht für $\ 2 [mm] \cdot \tfrac{1}{3} [/mm] = [mm] \tfrac{2}{3}$. [/mm]

Schreibt man dagegen  $\ [mm] a\tfrac{b}{c}$ [/mm] , so handelt es sich nicht
um einen Bruch in gemischter Schreibweise, sondern
(wegen der Variablen) um einen Term. Hier muss das
weggelassene Rechenzeichen ein Malpunkt sein
(andere Rechenzeichen dürfen in Termen nicht weggelassen werden).

$\ [mm] a\,\tfrac{b}{c}$ [/mm] muss also als  $\ [mm] a\, \cdot\, \tfrac{b}{c}$ [/mm] verstanden werden und niemals als  $\ [mm] a\, +\, \tfrac{b}{c}$ [/mm] ."

(https://de.wikipedia.org/wiki/Bruchrechnung#Gemischte_Brüche)


Mir als Mathematiker und langjährigem Mathematiklehrer
war diese Schreibweise der "gemischten Brüche" ohne das
eigentlich notwendige Pluszeichen schon sehr lange ein
Dorn im Auge.  Sie widerspricht einfach den sonst im
Bereich der Mathematik recht strengen und präzisen
syntaktischen Regeln.

Eingebürgert hat sich die Schreibweise wohl schon vor
Jahrhunderten. Da wird es schwer sein, dran etwas
"herumflicken" zu wollen. In älteren Texten kann man
aber durchaus etwa auch das treffendere "zweiundeinhalb"
anstatt "zweieinhalb" finden. Beim Schreiben der Zahl
liefert das "und" sofort das Pluszeichen zwischen dem
ganzzahligen Teil  2  und dem gebrochenen Anteil [mm] $\frac{1}{2}$ [/mm] .

Trotzdem möchte ich hier einmal die Frage an euch
Mathe-Interessierten stellen, was ihr von diesem Zwie-
spalt hält, der eigentlich mit praktisch ganz kleinem
Aufwand (und erheblichem Gewinn) behoben werden
könnte.

Insbesondere jene Lehrkräfte würden wohl spürbar
aufatmen, welchen es obliegt, den Kindern die ersten
Schritte in Algebra ("Buchstabenrechnen") beizubringen
und dabei bisher immer wieder entsprechende berechtigte
Fragen aufmerksamer Schüler nur mit Mühe und etwas
Widerwillen beantworten konnten.

Auf eure Äußerungen bin ich gespannt.

LG ,   Al-Chwarizmi  

        
Bezug
Gemischte Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:48 So 04.02.2018
Autor: HJKweseleit

Daran kann man sich schon gewöhnen. Man meint ja auch mit 2a den Wert [mm]2*a[/mm], aber mit 23 nicht [mm]2*3=6[/mm], sondern 20+3, und da fehlt schreibtechnisch noch mehr.

Viel unsinniger finde ich z.B. die in der Linearen Algebra übliche Angabe "im Punkt P(2|3|4)" statt P=(2|3|4). Schließlich schreibt man ja auch nicht "aus 2x-3=7 folgt x5", sondern x=5.


Bezug
                
Bezug
Gemischte Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 So 04.02.2018
Autor: Al-Chwarizmi


> Daran kann man sich schon gewöhnen. Man meint ja auch mit
> 2a den Wert [mm]2*a[/mm], aber mit 23 nicht [mm]2*3=6[/mm], sondern 20+3, und
> da fehlt schreibtechnisch noch mehr.


Naja, gewöhnen muss man sich da halt zwangsläufig
irgendwie, weil es einfach schon so lange so gebräuchlich
ist.

Den Vergleich mit der Schreibweise der mehrstelligen
Zahlen finde ich nun nicht besonders passend.

Die Einführung des Stellenwertsystems bei der Zahlen-
darstellung war zweifellos ein Fortschritt, der Verzicht
auf das Pluszeichen in "gemischten Brüchen" nach meiner
Ansicht eben überhaupt nicht.

LG ,  Al-Chw.

Bezug
        
Bezug
Gemischte Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 So 04.02.2018
Autor: fred97


> In Wikipedia findet man den Abschnitt:
>  
> " Ein Problem der gemischten Schreibweise ist, dass sie
> als Produkt missverstanden werden kann:
>  
> So steht [mm]\ 2\,\tfrac{1}{3}[/mm] meist für [mm]\ 2 + \tfrac{1}{3}\ =\ \tfrac{7}{3}[/mm]
> und nicht für [mm]\ 2 \cdot \tfrac{1}{3} = \tfrac{2}{3}[/mm].
>  
> Schreibt man dagegen  [mm]\ a\tfrac{b}{c}[/mm] , so handelt es sich
> nicht
> um einen Bruch in gemischter Schreibweise, sondern
> (wegen der Variablen) um einen Term. Hier muss das
> weggelassene Rechenzeichen ein Malpunkt sein
> (andere Rechenzeichen dürfen in Termen nicht weggelassen
> werden).
>  
> [mm]\ a\,\tfrac{b}{c}[/mm] muss also als  [mm]\ a\, \cdot\, \tfrac{b}{c}[/mm]
> verstanden werden und niemals als  [mm]\ a\, +\, \tfrac{b}{c}[/mm]
> ."
>  
> (https://de.wikipedia.org/wiki/Bruchrechnung#Gemischte_Brüche)
>  
> Mir als Mathematiker und langjährigem Mathematiklehrer
>  war diese Schreibweise der "gemischten Brüche" ohne das
>  eigentlich notwendige Pluszeichen schon sehr lange ein
>  Dorn im Auge.  Sie widerspricht einfach den sonst im
>  Bereich der Mathematik recht strengen und präzisen
>  syntaktischen Regeln.
>  
> Eingebürgert hat sich die Schreibweise wohl schon vor
>  Jahrhunderten. Da wird es schwer sein, dran etwas
> "herumflicken" zu wollen. In älteren Texten kann man
>  aber durchaus etwa auch das treffendere "zweiundeinhalb"
>  anstatt "zweieinhalb" finden. Beim Schreiben der Zahl
>  liefert das "und" sofort das Pluszeichen zwischen dem
>  ganzzahligen Teil  2  und dem gebrochenen Anteil
> [mm]\frac{1}{2}[/mm] .
>
> Trotzdem möchte ich hier einmal die Frage an euch
>  Mathe-Interessierten stellen, was ihr von diesem Zwie-
>  spalt hält, der eigentlich mit praktisch ganz kleinem
>  Aufwand (und erheblichem Gewinn) behoben werden
> könnte.
>  
> Insbesondere jene Lehrkräfte würden wohl spürbar
>  aufatmen, welchen es obliegt, den Kindern die ersten
>  Schritte in Algebra ("Buchstabenrechnen") beizubringen
>  und dabei bisher immer wieder entsprechende berechtigte
>  Fragen aufmerksamer Schüler nur mit Mühe und etwas
>  Widerwillen beantworten konnten.
>  
> Auf eure Äußerungen bin ich gespannt.

Hallo Al,

seit ich heute morgen Deinen Beitrag gelesen habe, haben sich übers Wochenende zwei
Luxusprobleme bei mir breit gemacht :

1. Schreibweise von gemischten Brüchen

2. Gestern Abend habe ich so viel Rollbraten gegessen, dass für  das Tiramisu kein Platz mehr war.

Das ist ein Problem zuviel für  mich. Das Tiramisu werde ich heute essen.

Nix für  Ungut.

Fred


>  
> LG ,   Al-Chwarizmi  


Bezug
                
Bezug
Gemischte Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 So 04.02.2018
Autor: Al-Chwarizmi

Hallo Fred

Wenn du das als "Luxusproblem" siehst, will ich dir
noch den genauen Zusammenhang verraten, in dem
mir heute die Frage wieder aufgekommen ist:

In einer Mathe-Frage in einem anderen Forum ging
es einem Fragenden um das Kürzen der Zahl

        $\ [mm] 6\,106/149$ [/mm]

Zuerst interpretierte ich dies beim Lesen als

        $\ 6'106/149\ [mm] \approx\ [/mm] 41$

und offerierte als (approximative) Lösung den Wert 41
und die Angabe, dass der Ausdruck eben nicht (exakt)
kürzbar ist.

Hier spielte also neben dem Problem der Erkennung der
Schreibung als "gemischter Bruch" (wenn alles auf der
Zeile geschrieben wird) noch ein anderes Problem bei
der Zahlenschreibung herein:  wie notieren wir Zahlen
mit vielen Dezimalen übersichtlich, also etwa mittels
eines Tausender-Trennzeichens? (Bekanntlich gibt es
dazu auch unterschiedliche Methoden:  Punkt, Komma,
Hochkomma, Zwischenraum, die ebenfalls zu
Misssverständnissen führen können).

Über solche Dinge nachzudenken (insbesondere auch
im Sinne der Didaktik der Mathematik) finde ich
deshalb nicht daneben.

LG

Bezug
                        
Bezug
Gemischte Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 So 04.02.2018
Autor: chrisno

So grob vor 30-40 Jahren ist mir diese Inkonsistenz der Schreibweise aufgestoßen. Ändern lasse wird sich da nichts. Ich habe aber auch kein Problem, Schülern zu sagen, dass ich diese Notation für Mist halte, und meinen Grund dafür zu erklären.

Bezug
                                
Bezug
Gemischte Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 So 04.02.2018
Autor: leduart

Hallo
die Schreibweise [mm] 1\bruch{1}{2} [/mm] entspricht so sehr der Sprache der Schüler, die auch wissen, dass das auch als Eins und Einhalb gelesen werden kann statt ein einhalb, also warum das ändern. Und [mm] a\bruch{b}{c} [/mm] tritt so in der Schule wohl kaum auf, vernünftigerweise schreibt man eben  [mm] a*\bruch{b}{c} [/mm]  oder  [mm] \bruch{ab}{c} [/mm] . Ich habe in Schule und nachhilfe noch nie Schwierigkeiten mit den Schreibweisen gekannt.
Schwierigkeiten treten bei etwas wie  [mm] 3*\bruch{x+1}{2} [/mm]  auf, wo manche Schüler nicht realisieren, dass der bruchstrich eine Klammer ersetzt. aber daran ändert sich nichts, wenn man mit oder ohne  mal dazwischen schreibt.

Bezug
        
Bezug
Gemischte Brüche: In anderen Ländern?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Mo 05.02.2018
Autor: angela.h.b.

Hallo,

wie ist das eigentlich in anderen Ländern?
Gibt es dort die Schreibweise [mm] 2\bruch{1}{2} [/mm] auch, oder ist sie dem deutschen Sprachgebrauch geschuldet? In den Sprachen, die ich einigermaßen verstehe, heißt es "zwei und ein halbes".

Ich habe öfter Schüler, die Probleme mit dem Verständnis der Schreibweise/Sprechweise haben, glaube aber, daß dies "nur" ein Problem im Zusammenhang mit dem Mathematikunterricht ist, kein Alltagsproblem.
Auf die Frage: "Wieviel Halbe sind dreieinhalb?" höre ich gar nicht so selten die Antwort: "Drei".
Sie übersetzen so: [mm] 3\bruch{1}{2}=3 [/mm] Hälften.
Gleichzeitig bin ich mir sicher, daß jeder von ihnen mir auf Aufforderung dreieinhalb Brötchen auf den Tisch legen könnte.

LG Angela












 

Bezug
        
Bezug
Gemischte Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Do 15.02.2018
Autor: Eisfisch


Also, ich erkläre beides meinen Schüler*n, weil ich es muss, damit sie das verstehen. Und erkläre das damit, dass man in der Mathematik auch manchmal faul ist. (#)
Und dass es verschiedene Faulheiten gibt:  Bei den Brüchen das Weglassen vom +, also zB. 2(+)3/4 , bei Termen das Weglassen von *, also zB. 2(*)b/c  
Und dass das nicht "konsequent" ist.




https://de.wikipedia.org/wiki/Bruchrechnung#Gemischte_Br%C3%BCche
Kap. Mixed "numbers" in: https://en.wikipedia.org/wiki/Fraction_(mathematics)
(#) "Faulheit ist der Humus des Geistes", Taddäus Troll  https://de.wikipedia.org/wiki/Thadd%C3%A4us_Troll








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de