www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Geometrie
Geometrie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:29 Mi 23.05.2012
Autor: Ana-Lena

Aufgabe
Gegeben ist [mm] $\sin(\alpha) [/mm] + [mm] cos(\alpha) [/mm] = d$, wobei d eine Konstante ist. Berechne den Wert von [mm] $\sin^6(\alpha)+\cos^6(\alpha)$ [/mm] in Abhängigkeit von $d$.


Hey,

meine Idee
[mm] $\sin^6(\alpha)+\cos^6(\alpha) [/mm] = [mm] (\sin^2(\alpha))^3+\cos^6(\alpha)$ [/mm]

[mm] $=(1-\cos^2(\alpha))^3+\cos^6(\alpha) [/mm] = ... = [mm] 1-3*\cos^2(\alpha)+3*cos^4(\alpha)$ [/mm]

$= [mm] 1-3*\cos^2(\alpha)(1-cos^2(\alpha)) [/mm] = [mm] 1-3*\cos^2(\alpha)(\sin^2(\alpha)) [/mm] = [mm] 1-3*(\cos(\alpha)\sin(\alpha)))^2$ [/mm]

Aber ich finde auch wenn ich [mm] $\cos(\alpha)=c-\sin(\alpha)$ [/mm] einsetze, dass es kein "schöner Wert" ist.

$= [mm] 1-3*((c\sin(\alpha))-c\sin^2(\alpha)))^2$ [/mm]

Hat jemand eine Idee? Liege ich sehr falsch?

Liebe Grüße,
Ana-Lena



        
Bezug
Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Mi 23.05.2012
Autor: reverend

Hallo Ana-Lena,

ich sehe gerade nicht, wie Dein Weg weiterführt. Ich würde anders vorgehen.

> Gegeben ist [mm]\sin(\alpha) + cos(\alpha) = d[/mm], wobei d eine
> Konstante ist. Berechne den Wert von
> [mm]\sin^6(\alpha)+\cos^6(\alpha)[/mm] in Abhängigkeit von [mm]d[/mm].
>  
> Hey,
>
> meine Idee
>  [mm]\sin^6(\alpha)+\cos^6(\alpha) = (\sin^2(\alpha))^3+\cos^6(\alpha)[/mm]
>  
> [mm]=(1-\cos^2(\alpha))^3+\cos^6(\alpha) = ... = 1-3*\cos^2(\alpha)+3*cos^4(\alpha)[/mm]
>  
> [mm]= 1-3*\cos^2(\alpha)(1-cos^2(\alpha)) = 1-3*\cos^2(\alpha)(\sin^2(\alpha)) = 1-3*(\cos(\alpha)\sin(\alpha)))^2[/mm]
>  
> Aber ich finde auch wenn ich [mm]\cos(\alpha)=c-\sin(\alpha)[/mm]
> einsetze, dass es kein "schöner Wert" ist.
>  
> [mm]= 1-3*((c\sin(\alpha))-c\sin^2(\alpha)))^2[/mm]
>  
> Hat jemand eine Idee? Liege ich sehr falsch?

Falsch nicht, aber ist das zielführend?

Ich würde so anfangen:

[mm] 1=(\sin^2{\alpha}+\cos^2{\alpha})^3=\sin^6{\alpha}+3\sin^4{\alpha}\cos^2{\alpha}+3\sin^2{\alpha}\cos^4{\alpha}+\cos^6{\alpha} [/mm]

[mm] \Rightarrow \sin^6{\alpha}+\cos^6{\alpha}=1-3\sin^2{\alpha}\cos^2{\alpha}(\sin^2{\alpha}+\cos^2{\alpha})=1-3(\sin{\alpha}\cos{\alpha})^2 [/mm]

Aus [mm] d^2=(\sin{\alpha}+\cos{\alpha})^2=\sin^2{\alpha}+2\sin{\alpha}\cos{\alpha}+\cos^2{\alpha}=1+2\sin{\alpha}\cos{\alpha} [/mm]

kannst Du nun die gesuchte Beziehung zu d herstellen.

Grüße
reverend


Bezug
        
Bezug
Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Mi 23.05.2012
Autor: weduwe

ich vermute, ich habe es mir deutlich einfacher gemacht, na schauen wir einmal :-)

mein ergebnis wäre

[mm] sin^6\alpha+cos^6\alpha=\frac{1+6d^2-3d^4}{4} [/mm]

und das könnte sogar stimmen

Bezug
                
Bezug
Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Mi 23.05.2012
Autor: reverend

Hallo weduwe,

> ich vermute, ich habe es mir deutlich einfacher gemacht, na
> schauen wir einmal :-)
>  
> mein ergebnis wäre
>  
> [mm]sin^6\alpha+cos^6\alpha=\frac{1+6d^2-3d^4}{4}[/mm]
>  
> und das könnte sogar stimmen

Ja, das stimmt. Ich habe nur einen Rechenschritt vor dem Ergebnis aufgehört, siehe oben.

Wie lautet denn Dein noch einfacherer Weg?
Lies vorher vielleicht mal meine Antwort auf die Frage...

Grüße
reverend


Bezug
                        
Bezug
Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Mi 23.05.2012
Autor: weduwe

ich setze

[mm](1)\quad{ }x+y=d[/mm] mit [mm](2)\quad{ }y^2=1-x^2[/mm]

(2) in [mm]\quad{ }x^6+y^6=D[/mm] eingesetzt führt auf

[mm](3)\quad{ }3x^4-3x^2+1=D[/mm]

jetzt x aus (1) ausrechnen ergibt

[mm] D=\frac{1+6d^2-3d^4}{4} [/mm]

Bezug
                                
Bezug
Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Mi 23.05.2012
Autor: reverend

Hallo weduwe,

das ist doch der gleiche Weg in anderer Verkleidung. Er sieht knapper aus, weil Du x und y als Schreiberleichterung einführst und die Zwischenschritte beim letzten Einsetzen auslässt.

Naja, egal. Es führen ja viele Wege nach Rom. Hauptsache, man kommt an.

Grüße ;-)
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de