www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Geometrische Gestalt
Geometrische Gestalt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Gestalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 So 01.07.2007
Autor: rainman_do

Aufgabe
Beschreiben Sie die geometrische Gestalt der Kurve

{(x,y) [mm] \in \IR^2 [/mm] | [mm] x^2+axy+y^2 [/mm] = 1}

in Abhängigkeit vom Parameter a [mm] \in \IR! [/mm]

Hallo, ich mal wieder. Also ich denke mal ich soll hier so etwas angeben wie: wenn a < 0 dann ist die Kurve eine Parabel (ist jetzt nur ein Beispiel und sehr unwahrscheinlich das es stimmt)...aber wie komme ich darauf zu behaupten, dass es sich um eine Parabel/Hyperbel o.ä. handelt? und muss ich das nur behaupten oder auch noch beweisen (davon steht ja nix in der aufgabe)? Vielen Dank erstmal im Voraus

        
Bezug
Geometrische Gestalt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 So 01.07.2007
Autor: leduart

Hallo
siehe nach in wikipedia unter Kegelschnitte.
Gruss leduart

Bezug
                
Bezug
Geometrische Gestalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 So 01.07.2007
Autor: rainman_do

Hallo leduart,

erstmal danke für die schnelle Antwort. Ich hab mir den Wikipedia-Artikel durchgelesen muss aber leider zugeben dass ich daraus nicht wirklich schlau werde. Also ich muss die Determinante einer Matrix berechnen, die aus den Koeffizienten der Gleichung besteht, das wäre aber in meinem Fall nur eine 2x2 Matrix? was kommt da rein und noch viel wichtiger: wie kommt es da rein?  einfach [mm] \pmat{ 1 & a \\ a & 1 } [/mm] ? Das wäre dann ja (um im Wikipedia-Stil weiter zu machen) [mm] \Delta, [/mm] aber was ist [mm] \delta, [/mm] einfach die nächst kleinere Matrix [mm] \pmat{1} [/mm] ? und S ist dann 1 (-> wikipedia a+c, wobei doch mein [mm] \delta [/mm] gar kein c mehr enthält...)? Fragen über Fragen, sorry

Bezug
                        
Bezug
Geometrische Gestalt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 So 01.07.2007
Autor: leduart

Hallo
> Hallo leduart,
>  
> erstmal danke für die schnelle Antwort. Ich hab mir den
> Wikipedia-Artikel durchgelesen muss aber leider zugeben
> dass ich daraus nicht wirklich schlau werde. Also ich muss
> die Determinante einer Matrix berechnen, die aus den
> Koeffizienten der Gleichung besteht, das wäre aber in
> meinem Fall nur eine 2x2 Matrix? was kommt da rein und noch
> viel wichtiger: wie kommt es da rein?  einfach [mm]\pmat{ 1 & a \\ a & 1 }[/mm]

nein, wenn du genau liest isst das

[mm]\pmat{ 1 & a & 0\\ a & 1 & 0\\ 0 & 0 & -1 }[/mm]

mit [mm] \Delta=-1; [/mm]
[mm] \delta [/mm] ist dann deine 2 x 2 Matrix oben und S=2

> ? Das wäre dann ja (um im Wikipedia-Stil weiter zu machen)
> [mm]\Delta,[/mm] aber was ist [mm]\delta,[/mm] einfach die nächst kleinere
> Matrix [mm]\pmat{1}[/mm] ? und S ist dann 1 (-> wikipedia a+c, wobei
> doch mein [mm]\delta[/mm] gar kein c mehr enthält...)? Fragen über

ein bissel sorgfältiger musst du schon lesen!
du kannst statt dessen di Koordinatentransformation (Drehung) suchen, die das in "normalform" bringt, also das axy verschwinden lässt!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de